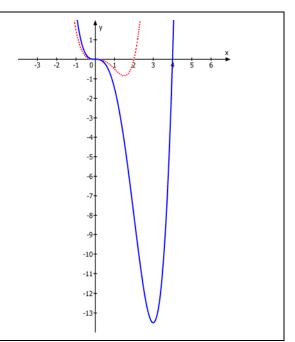
Abschlussprüfung Fachoberschule 2010 Herbst, (Mathematik) Aufgabenvorschlag A


1 Kurvenuntersuchung

/40

Gegeben sind zwei ganzrationale Funktionen f und g (siehe Graphik) mit den Funktionsgleichungen:

$$f(x) = \frac{1}{2}x^4 - x^3$$
 und $g(x) = \frac{1}{2}x^4 - 2x^3$

mit $x \in IR$.

1.1 Geben Sie an, welcher Graph zu welcher Funktion gehört und begründen Sie Ihre Aussage.

/4

1.2 Berechnen Sie den Tiefpunkt des Graphen von *g*.

/10

1.3 Berechnen Sie die Wendepunkte des Graphen von *g*.

/8

1.4 Bestimmen Sie die Gleichungen der Tangenten, die in den Punkten $P_1(0 \mid g(0))$ und $P_2(2 \mid g(2))$ den Graphen von g berühren.

/6

1.5 Bestimmen Sie den Flächeninhalt, der von den beiden Graphen und der *x*-Achse eingeschlossen wird.

/6

1.6 Die Tiefpunkte $T_f(\frac{3}{2}|f(\frac{3}{2}))$ und $T_g(3|g(3))$ und der Punkt $P(2|-\frac{8}{3})$ liegen auf einem Graphen einer ganzrationalen Funktion k. Entscheiden Sie, welche der beiden folgenden Aussagen wahr ist:

/6

a. k ist eine lineare Funktion mit einer Funktionsgleichung der Form k(x) = mx + n; $m, n \in IR$.

b. k ist eine ganzrationale Funktion mit einer Funktionsgleichung $k(x) = ax^4$; $a \in IR$.

Begründen Sie Ihre Entscheidung und bestimmen Sie die Funktionsgleichung von \boldsymbol{k} .

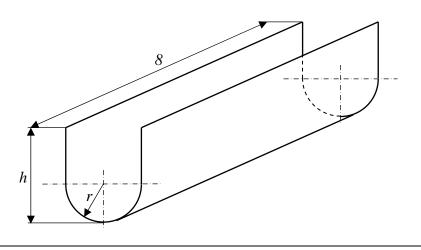
Abschlussprüfung Fachoberschule 2010 Herbst, (Mathematik) Aufgabenvorschlag A

2 Rekonstruktion /15

Der Graph einer Funktion dritten Grades berührt im Punkt N(4|0) die x-Achse, und im Punkt P(2|f(2)) hat die zugehörige Tangente die Funktionsgleichung g(x) = -2x + 8.

- 2.1 Stellen Sie mit den oben genannten Bedingungen das Bedingungsgefüge zusammen und stellen Sie daraus ein Gleichungssystem auf.
- **2.2** Bestimmen Sie die Koeffizienten von *f*, indem Sie das Gleichungssystem *f* mit einem Verfahren Ihrer Wahl lösen.

Sollten Sie unter 2.1 die Bedingungen nicht oder nur unvollständig aufgestellt haben, lösen Sie das folgende Ersatzgleichungssystem:


I:
$$2 = 36a + 10b + 3c + d$$
II: $10 = 20a + 8b + 4c + d$
III: $-1 = 30a + 6b + c$
IV: $-4 = 24a + 8b + 2c$

2.3 Stellen Sie die Funktionsgleichung von *f* auf, indem Sie die berechneten Koeffizienten in Ihren Ansatz einsetzen.

3 Extremwertaufgabe

/15

Aus einer Blechtafel ($2m \times 8m \times 1,5mm$) soll durch Biegen eine 8m lange nach oben offene Rinne gefertigt werden. Die Fläche des Querschnitts soll hierbei aus einem Halbkreis und einem Rechteck zusammengesetzt sein.

Rechnen Sie ohne Einheiten

Zeigen Sie, dass V eine (Ziel)Funktion ist, mit der die Rauminhalte der Rinnen in Abhängigkeit vom Radius des jeweilig gewählten Halbkreises berechnet werden können. Es gilt:

$$V(r) = 16r - 4\pi r^2$$
 mit $D_V = \{r \in IR \mid 0 \le r \le \frac{2}{\pi}\}$

1 Längeneinheit $\hat{=}$ 1 m bzw. 1 Volumeneinheit $\hat{=}$ 1 m³

3.2 Ermitteln Sie, welche Abmessungen zu wählen sind, damit die Rinne möglichst viel Flüssigkeit aufnehmen kann.Beschreiben Sie, wie die Rinne in diesem Fall aussieht.

3.3 Erläutern Sie, warum $D_V=\{r\in IR\,|\,0\leq r\leq \frac{2}{\pi}\}$ der Definitionsbereich der (Ziel)Funktion V ist.

Abschlussprüfung Fachoberschule 2010 Herbst, (Mathematik) Aufgabenvorschlag A

4 Integralrechnung

/30

Gegeben sind die reell definierten Funktionen f und g durch ihre Funktionsgleichungen

$$f(x) = 2x^3$$
 und $g(x) = 3x^2 - 1$

4.1 Weisen Sie nach, dass beide Funktionen außer dem Berührpunkt $P_1(1|2)$ nur noch einen Schnittpunkt haben, nämlich $P_2(-\frac{1}{2}|-\frac{1}{4})$.

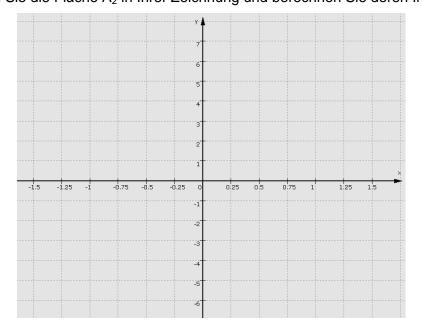
*|*7

4.2.

Ergänzen Sie die Wertetabelle.

/7

$$x$$
 -1,5 -1 -0,5 0 0,5 1 1,5
 $f(x)$
 $g(x)$


Zeichnen Sie die Graphen beider Funktionen f und g in <u>einem</u> Koordinatensystem im Intervall [-1,5;1,5]. Nutzen Sie das Koordinatensystem am Ende der Aufgabenstellung.

4.3. Beide Funktionsgraphen schließen eine Fläche A_1 ein. Berechnen Sie den Inhalt dieser Fläche A_1

/5

4.4. Die Funktionsgraphen und die Gerade y = 2 schließen die Fläche A_2 ein. Skizzieren Sie die Fläche A_2 in Ihrer Zeichnung und berechnen Sie deren Inhalt.

/11

Teil-	Erwartete Teilleistung	BE in AB		
auf-		1	II	III
gaben	·			
1.2	-3 -2 -1 0	4		
	$g'(x) = 2x^3 - 6x^2$		1	
	$g''(x) = 6x^2 - 12x$		1	
	$g'(x) = 0 \Leftrightarrow 2x^3 - 6x^2 = 0$		3	
	x = 0; keine Extremstelle,		1	
	mögliche Begründung durch Einsetzen		•	
	x = 3; $g''(3) > 0$;		2	
	$g(3) = -13,5 \Rightarrow T(3 \mid -13,5)$ ist Tiefpunkt		2 2	

Teil-	Erwartete Teilleistung			
auf-		1	II	III
gaben 1.3	#()			
1.3	$g''(x) = 6x^2 - 12x$		1	
	g'''(x) = 12x - 12		1	
	$g''(x) = 0 \Leftrightarrow 6x^2 - 12x = 0$		2	
	$x_{W1} = 0$; $g'''(0) \neq 0$; $g(0) = 0 \Rightarrow W_1(0 0)$ ist Wendepunkt			
	$x_{W2} = 2$; $g'''(2) \neq 0$; $g(2) = -8 \Rightarrow W_2(2 \mid -8)$ ist Wendepunkt		2 2	
	Überprüfung auf Sattelpunkt wird nicht gefordert.			
1.4	Bestimmung der Gleichungen der Wendetangenten:			
	Die Wendetangente in $W_1(0 0)$ ist die x -Achse, da die			
	Kurvensteigung in W_1 gleich Null ist (also Sattelpunkt).		3	
	Sie hat die Gleichung $t_1(x) = 0$ oder $y = 0$.			
	3 ((u)			
	Die Tangente in W_2 geht durch den Punkt $(2 \mid -8)$ und hat		3	
	die Steigung $g'(2) = 16 - 24 = -8$. Sie hat also die			
	Gleichung $t_2(x) = -8x + 8$ oder $y = -8x + 8$.			
1.5	$A = \left \int_{0}^{4} g(x) dx \right - \left \int_{0}^{2} f(x) dx \right $		2	
	$= \left \left[\frac{1}{10} x^5 - \frac{1}{2} x^4 \right]_0^4 \right - \left \left[\frac{1}{10} x^5 - \frac{1}{4} x^4 \right]_0^2 \right $		2	
	= 102, 4-128-0 - 3, 2-4-0			
	=24,8FE		2	
1.6	Aussage a. k ist keine lineare Funktion. Dieser Sachverhalt kann aus der Skizze entnommen werden. Ein rechnerischer Nachweis ist möglich, wird aber nicht verlangt.		1	
	Aussage b. Bestimmung von a für den Fall, dass $P \in k$			2
	$k(x) = ax^4$; $k(2) = -\frac{8}{3} \Rightarrow 16a = -\frac{8}{3} \Leftrightarrow a = -\frac{1}{6}$.			

Teil-	Erwartete Teilleistung	BE in AB		
auf-		I	II	III
gaben				
	Prüfen, ob:			
	$T_f \in k : -\frac{1}{6} \cdot \left(\frac{3}{2}\right)^4 = -\frac{81}{96} = -\frac{27}{32} \Rightarrow T_f \in k$			3
	$T_g \in k : -\frac{1}{6} \cdot 3^4 = -\frac{81}{6} = -\frac{27}{2} \Longrightarrow T_g \in k$			
	Die Aussage b ist wahr. Die gesuchte Funktion k hat die			
	Funktionsgleichung: $k(x) = -\frac{1}{6}x^4$.			
	Summe	4	31	5
	mögliche BE		40	

Teil- Erwartete Teilleist	ung		BE in AB		
auf-		I	II	III	
gaben 2.1 Ansatz:					
$f(x) = ax^3 + bx^2 + ax^3 + bx^3 + $					
$f'(x) = 3ax^2 + 2bx$	c+c	1			
Bedingungsgefü	ge:	1			
1. $f(4) = 0$ ($x_N = 0$	4 ist Nullstelle)	'			
2. $f'(4) = 0$ (x_E	=4 ist Extremstelle)		1		
3. $f(2) = g(2) = -$	$-2\cdot(2)+8=4$		2		
(P(2 f(2)) ist ge)	meinsamer Punkt von g und f)			1	
4. $f'(2) = -2$ (g ist Tangente an den Graphen von		1		
f bei $x=2$)					
2.2 Gleichungssyste	m:				
2.2 Gleichungssyste	9111.				
I: 0	= 64a + 16b + 4c + d				
	= 8a + 4b + 2c + d				
	= 48a + 8b + c				
IV: -2	= 12a + 4b + c				
Lösen des Gleic	hungsystems				
(ebenso Ersatz-					
,	,				
Danser 2009 ()	sh (auch Fracts I CC)				
	ch (auch Ersatz-LGS):		5		
$a = \frac{1}{2}, b = -4,$	c = 8, $d = 0$	2			
2.3 Für den Funktion	nsterm gilt:				
$f(x) = \frac{1}{2}x^3 - 4x^2$	+8 <i>x</i>	1			
Summe		5	9	1	
mögliche BE			15		

Teil-	Erwartete Teilleistung		BE in AB	
auf-	G	I	II	Ш
gaben 3.1	Englation of day 7: alfamble on			
3.1	Erstellung der Zielfunktion		1	
	$A(r,h) = 2r \cdot (h-r) + \frac{1}{2} \pi \cdot r^2$ als Hauptbedingung			
	$2 = 2 \cdot (h - r) + \frac{1}{2} \pi \cdot 2r$ als Nebenbedingung			
	$=2h-2r+\pi r$			
	$=2h+(\pi-2)r$			2
	Es folgt:			
	$2h = 2 - (\pi - 2)r$	1		
	$h = 1 - \frac{1}{2}\pi r + r$	•		
	Eingesetzt in die Hauptbedingung: $A(n) = 2n (1 + \pi n + n - n) + 1 + \pi n^2$		1	
	$A(r) = 2r \cdot (1 - \frac{1}{2}\pi r + r - r) + \frac{1}{2}\pi r^{2}$			
	$= 2r \cdot (1 - \frac{1}{2}\pi r) + \frac{1}{2}\pi r^2$			
	$=2r-\pi r^{2}+\frac{1}{2}\pi r^{2}$	1		
	$=2r-\frac{1}{2}\pi r^2$		1	
	$V(r) = 8 \cdot A(r)$		ı	
	$V(r) = 16r - 4\pi r^2$			
3.2	Berechnung der Abmessungen:			
	$V(r) = 16r - 4\pi r^2$, $V'(r) = 16 - 8\pi r$, $V''(r) = -8\pi$		4	
	$V(r) = 10r - 4\pi r^{2}, V(r) = 10 - 8\pi r, V(r) = -8\pi$		1	
	$V'(n) = 0$ and $V''(n) \neq 0$ is thin reigh and für Extremetallen		1	
	$V'(r) = 0$ und $V''(r) \neq 0$ ist hinreichend für Extremstellen $16 - 8\pi r = 0$ $\mid +8\pi r$			
	'			
	$\pi r = 2 + \pi$			
	$r_1 = \frac{2}{\pi} \in D_V$	1		
	≈ 0,64 ist Extremstellenkandidat.			
	$Mit V''(\frac{2}{\pi}) = -8\pi$			
	<0 folgt,		1	
	dass $r_H = \frac{2}{\pi}$ Hochstelle von <i>V</i> ist.			
	Einsetzen von r_{H} in die nach h umgestellte			
	Nebenbedingung:			
	$h_{H} = 1 - \frac{1}{2}\pi \cdot \frac{2}{\pi} + \frac{2}{\pi}$			
		1		
	$=\frac{2}{\pi}$			
	≈ 0,64			
	Damit die Rinne maximal viel Flüssigkeit aufnehmen			

Teil-	Erwartete Teilleistung		BE in AB		
auf- gaben		Ι	II	III	
	kann, muss die Fläche des Querschnitts ausschließlich aus einem Halbkreis bestehen.			1	
	Wegen 1 Einheit entspricht 1 <i>m</i> , ist als Radius ein Wert von ca. 0,64 m zu wählen.				
3.3					
	$D_V = \left\{ r \in IR \mid 0 \le r \le \frac{2}{\pi} \right\}$ ist der Definitionsbereich.				
	Ist der Radius $r=0$, dann ist die Höhe $1m$, das Blech wird nur in der Mitte um 180° gebogen – der Flächeninhalt ist dann Null. Aufgrund der Bemaßung muss die Höhe mindesten so groß sein wie der Radius. In diesem Fall (also $h=r$)		1		
	ergibt sich aus Formel für die Nebenbedingung $r = \frac{2}{\pi}$			1	
	Summe	4	7	4	
	mögliche BE	15			

Teil-	Erwartete Teilleistung		BE in AB	
auf- gaben	-	I	II	III
4.1	Die Gleichungen gleichsetzen und Polynomdivision des Termes ($2x^3 - 3x^2 + 1$) durch ($x - 1$) liefert $2x^2 - x - 1 = 0$ mit den Lösungen $x_1 = 1$ und $x_2 = -\frac{1}{2}$. Damit ist $x_1 = 1$ Doppellösung, also ist B($1/2$) Berührpunkt und $x_2 = -\frac{1}{2}$ liefert den Schnittpunkt $S(-\frac{1}{2}/-\frac{1}{4})$.		7	
4.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	4	
4.3	$A_1 = \int_{-0.5}^{1} (2x^3 - 3x^2 + 1) dx$		2	
	$A_1 = [0.5 x^4 - x^3 + x]_{-0.5}^1 = \frac{27}{32} FE$	3		

Teil-	Erwartete Teilleistung	BE in AB		
auf-			II	Ш
gaben				
4.4	Skizze siehe 4.2			
			2	
	$A_2 = \int_{-1}^{-0.5} (2 - (3x^2 - 1)) dx + \int_{-0.5}^{1} (2 - 2x^3) dx$			3
	$A_{2} = [3x - x^{3}]^{-0.5}_{-1} + [2x - 0.5 x^{4}]^{1}_{-0.5}$		3	
	$A_2 = \frac{5}{8}FE + \frac{81}{32}FE = \frac{101}{32}FE = 3\frac{5}{32}FE$	3		
	Summe	9	18	3
	mögliche BE		30	