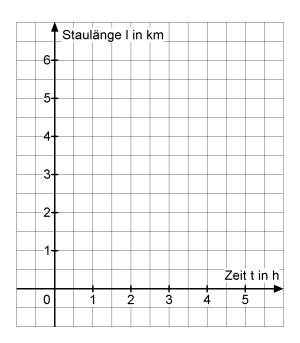
Abschlussprüfung Fachoberschule 2011 (Mathematik) Aufgabenvorschlag B

1 /40

Auf der Berliner Stadtautobahn A100 / Autobahndreieck Charlottenburg wurde über einen bestimmten Zeitraum die Staulänge l in Abhängigkeit von der Zeit t gemessen. Die Staulänge $l \ge 0$ kann näherungsweise durch die Funktion f mit

$$f(t) = -\frac{1}{6}t^4 + 2t^2 - 1 \; ; \; t \in D_f \; \text{ dargestellt werden}.$$

1 Längeneinheit


1 km, 1 Zeiteinheit

1 h

Foto: J. Lehnen

- **1.1** Berechnen Sie mit Hilfe einer Nullstellenberechnung die Gesamtdauer des Staus.
- **1.2** Berechnen Sie die Länge des Staus zum Zeitpunkt t = 3. Berechnen Sie, wie stark die Staulänge zu diesem Zeitpunkt pro Stunde steigt bzw. fällt.
- **1.3** Berechnen Sie den Zeitpunkt, an dem die Staulänge am größten war. Berechnen Sie, wie lang der Stau zu diesem Zeitpunkt war.
- **1.4** Bestimmen Sie den Wendepunkt des Graphen von f und erläutern Sie die Bedeutung dieses Wendepunktes in Hinblick auf die Tendenz der Staulänge.
- 1.5 Bei Verkehrsdurchsagen werden nur noch Staulängen ab 1km Länge /9 durchgegeben. Wann hat der Stau genau diese Länge und wieviel Zeit vergeht zwischen diesen beiden Zeitpunkten?
- **1.6** Zeichnen Sie den Graphen von f in das vorgegebene Koordinatensystem.

- **1.7** Beschreiben Sie anhand Ihrer graphischen Darstellung mit eigenen Worten den zeitlichen Verlauf des Staus.
- /3

*1*7

*1*7

/4

Abschlussprüfung Fachoberschule 2011 (Mathematik) Aufgabenvorschlag B

2 /15

Die gesuchte Funktion f hat den Grad 3. Die Stelle $x_W = 2$ ist eine Wendestelle.

Die Orthogonale (Normale) im Wendepunkt $W(2 \mid f(2))$ hat die Steigung $m_O = \frac{1}{2}$.

Der Funktionsgraph hat im Punkt H(3|2) ein lokales Maximum.

2.1 Bestimmen Sie die Funktionsgleichung dieser Funktion.

/12

Wenn Sie das Gleichungssystem nicht aufstellen können, lösen Sie <u>ersatzweise</u> das folgende Gleichungssystem und bestimmen Sie damit die gesuchte Funktionsgleichung $f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$ der Funktion f.

$$4 = 54a_3 + 18a_2 + 6a_1 + 2a_0$$

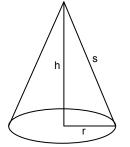
$$0 = 81a_3 + 18a_2 + 3a_1$$

$$-1 = 6a_3 + 2a_2 + 0.5a_1$$

$$0 = 6a_3 + a_2$$

bestimmen konnten.)

2.2 Beschreiben Sie allgemein, wie Sie die Funktionsgleichungen der Orthogonale und der Tangente im Wendepunkt $W(2 \mid f(2))$ bestimmen würden. (HINWEIS: Das können Sie auch tun, wenn Sie in 2.1 keine Funktionsgleichung


/3

3 /15

Für eine Messehalle wird eine Werbefläche in Form eines geraden Kreiskegels geplant, der an zentraler Stelle auf dem Boden stehen soll.

Die Seitenlinie *s* des Kegels ist mit 3,6 m fest vorgegeben (siehe Skizze).

Der Kegel ist so zu gestalten, dass sein Volumen möglichst groß ist.

3.1 Weisen Sie nach, dass die Zielfunktion zur Bestimmung des Volumens wie folgt

$$V(1) = \pi_{13} \cdot 4.22 \cdot 1$$

/6

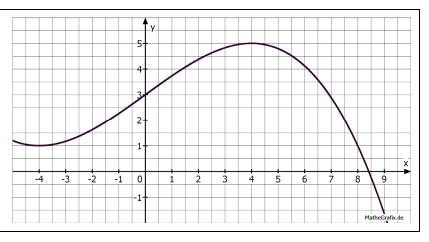
lautet:
$$V(h) = -\frac{\pi}{3}h^3 + 4{,}32\pi h$$

3.2 Wie sind Radius und Höhe zu wählen, wenn das Volumen des Kegels möglichst groß werden soll?

/7

3.3 Berechnen Sie das Volumen dieses Kegels.

/1


3.4 Bestimmen Sie die Größe der Werbefläche.

/1

Abschlussprüfung Fachoberschule 2011 (Mathematik) Aufgabenvorschlag B

4 /30

Gegeben ist eine Funktion f mit der Funktionsgleichung $f(x) = -\frac{1}{64}x^3 + \frac{3}{4}x + 3 \; ; \; x \in \mathbf{R}$ und deren Graph.

4.1 Begründen Sie rechnerisch, dass die Funktion f im Intervall [8;9] eine Nullstelle haben muss.

/8

Berechnen Sie diese Nullstelle in 3 Iterationsschritten durch ein geeignetes Näherungsverfahren.

Machen Sie eine Aussage über die Genauigkeit Ihrer Lösung.

4.2 Berechnen Sie den Inhalt der Fläche A_1 , die der Graph der Funktion f mit der

/6

x-Achse und der senkrechten Geraden an der Stelle x = -4 vollständig einschließt.

Rechnen Sie mit dem in 4.1 bestimmten Näherungswert.

Wenn Sie den Näherungswert nicht bestimmen konnten, lesen Sie die Nullstelle aus dem gegebenen Graphen ab.

4.3 Für welches b > -4 gilt: $\int_{-4}^{b} f(x) dx = 24$?

/7

Berechnen Sie eine Lösung.

Begründen Sie die Existenz einer zweiten Lösung für $\,b\,$ und beschreiben Sie die Lage.

4.4 Gegeben ist die Gerade g mit g(x) = 3.

/9

Ermitteln Sie die Schnittpunkte der Funktionen f und g und bestimmen Sie den Inhalt der Fläche A_2 , die von den beiden Graphen im 1. Quadranten eingeschlossen wird.

Abschlussprüfung Fachoberschule 2011 Mathematik

Erwartungshorizont für Aufgabenvorschlag B

Aufg. 1	Erwartete Teilleistung	В	E in A	В		Erbrachte Teilleistung
Aulg. I		I	Ш	Ш	BE	Begutachtung
1.1	Nullstellen von <i>f</i> :					
	$f(t) = 0 \Leftrightarrow -\frac{1}{6}t^4 + 2t^2 - 1 = 0$	1				
	Substitution					
	$z = t^2 \Leftrightarrow -\frac{1}{6}z^2 + 2z - 1 = 0 \Leftrightarrow z^2 - 12z + 6 = 0$		2			
	$z_{1/2} = 6 \pm \sqrt{\frac{144}{4} - 6} = 6 \pm \sqrt{30} \Rightarrow z_1 = 6 + \sqrt{30}$; $z_2 = 6 - \sqrt{30}$		1			
	$t_{1/2} = \pm \sqrt{z_1} \approx \pm 3.39 \; ; \; t_{3/4} = \pm \sqrt{z_2} \approx \pm 0.72$	2				
	t_2 und t_4 sind nicht zu berücksichtigen					
	Gesamtdauer des Staus: $t_{gesamt} = t_1 - t_3 = 2,66 h$	1				
	Der Stau hat eine Gesamtdauer von 2,67 Stunden = 2h + 40min.	_				
1.2	$f(3) = -\frac{1}{6} \cdot 3^4 + 2 \cdot 3^2 - 1 = 3,5$	1				
	Zum Zeitpunkt $t = 3$ beträgt die Staulänge $l = 3,5km$					
	Änderungsrate des Staus $f'(3)$:		3			
	$f'(t) = -\frac{4}{6}t^3 + 4t \implies f'(3) = -\frac{4}{6} \cdot 3^3 + 4 \cdot 3 = -6$					
	Die Änderungsrate beträgt: $f'(3) = -6 \frac{km}{h}$					
1.3	Extremum berechnen					
Forts. ↓	$f'(t) = 0 \Leftrightarrow -\frac{4}{6}t^3 + 4t = 0 \Leftrightarrow t\left(-\frac{2}{3}t^2 + 4\right) = 0$	1	1			
	$t_1 = 0$ (nicht zu berücksichtigen)					
	Zwischensumme Aufg. 1.1 bis 1.3 (1.Teil):	6	7	0		Übertrag ٦

Aufg. 1	Erwartete Teilleistung	В	E in A			Erbrachte Teilleistung
Auig. i	Li waitete Tellicistarig		Ш	Ш	BE	Begutachtung
	⊔ Übertrag:	6	7	0		
Forts. 1.3	$-\frac{2}{3}t^2 + 4 = 0 \iff t^2 = 6 \iff t_{2/3} = \pm\sqrt{6}$					
1.3			2			
	$t_2 = \sqrt{6} \approx 2,449$; $t_3 = -\sqrt{6}$ (nicht zu berücksichtigen)					
	$f''(t) = -2t^2 + 4 \Rightarrow f''(\sqrt{6}) = -8 < 0 \Rightarrow Hochpunkt$		2			
	$f(\sqrt{6}) = 5 \Rightarrow$ Staulänge zum Zeitpunkt $t = \sqrt{6}$ betrug $l = 5km$.		2			
1.4	Wendepunkt berechnen					
	$f''(t) = 0 \Leftrightarrow -2t^2 + 4 = 0 \Leftrightarrow t_{1/2} = \pm \sqrt{2}$					
	$t_1 = \sqrt{2}$; $t_2 = -\sqrt{2}$ (nicht zu berücksichtigen)	3				
	$f'''(t) = -4t \Rightarrow f'''(\sqrt{2}) = -4\sqrt{2} < 0 \Rightarrow Wendepunkt$					
	$f\left(\sqrt{2}\right) = 2, \overline{3} \implies W\left(\sqrt{2} \mid 2, \overline{3}\right)$		2			
	z.B. Die Staulängenänderung ist hier am größten oder Nach dem Wendepunkt wird die Zunahme des Staus geringer			2		
1.5	$f(t) = 1 \Leftrightarrow -\frac{1}{6}t^4 + 2t^2 - 1 = 1 \Leftrightarrow -\frac{1}{6}t^4 + 2t^2 - 2 = 0$		2			
	Substitution: $z = t^2 \Rightarrow -\frac{1}{6}z^2 + 2z - 2 = 0$		1			
	$z^2 - 12z + 12 = 0 \Leftrightarrow z_{1/2} = 6 \pm \sqrt{\frac{144}{4} - 12} = 6 \pm \sqrt{24}$					
	$\Rightarrow t_{1/2} = \pm \sqrt{z_1} \approx \pm 3,301; t_{3/4} = \pm \sqrt{z_2} \approx \pm 1,049$	4				
	Gesamtdauer der Verkehrsdurchsagen: $t_{gesamt} = t_1 - t_3 = 2,252 h$		2			
	Zwischensumme Aufg. 1.1 bis 1.5:	13	18	2		Übertrag ٦

Aufg. 1	Erwartete Teilleistung		E in A			Erbrachte Teilleistung
Auly. I			Ш	Ш	BE	Begutachtung
		13	18	2		
1.6	graphische Darstellung Staulänge I in km 6 4	4				
1.7	 beispielhaft: 1) Der Stau beginnt 0,72 h (≈43 min) nach Start der Zeitmessung. 2) Der Stau steigt sehr schnell an und erreicht eine maximale Länge von 5 km. 3) Insgesamt beträgt die Zeitdauer des Staus 2,66h (≈2h + 40min). 	3				
	Summe: Summe:	20	18 40	2	-	Erreichte BE Endsumme Aufgabe 1

Aufa 2	Erwartete Teilleistung	В	E in A	В	Erbrachte Teilleistung		
Aufg. 2		I	II	Ш	BE	Begutachtung	
2.1	Ansatz: $f(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ $f'(x) = 3a_3x^2 + 2a_2x + a_1$ $f''(x) = 6a_3x + 2a_2$		1				
	Bedingungsgefüge: 1. $x_W = 2$ ist Wendestelle: $f''(2) = 0 = 12a_3 + 2a_2$		1				
	2. $m_T = -2$ in W: $f'(2) = -2 = 12a_3 + 4a_2 + a_1$			2			
	3. H(3 2) ist Punkt auf G_f : $f(3) = 2 = 27a_3 + 9a_2 + 3a_1 + a_0$		1				
	4. H(3 2) ist Hochpunkt: $f'(3) = 0 = 27a_3 + 6a_2 + a_1$		1				
	Gleichungssystem: $2 = 27a_3 + 9a_2 + 3a_1 + a_0$ $0 = 27a_3 + 6a_2 + a_1$ $-2 = 12a_3 + 4a_2 + a_1$ $0 = 12a_3 + 2a_2$			1			
	$a_3 = \frac{2}{3}$; $a_2 = -4$; $a_1 = 6$; $a_0 = 2$			4			
	$f(x) = \frac{2}{3}x^3 - 4x^2 + 6x + 2$		1				
2.2	Das Verfahren muss sinngemäß so beschrieben werden: Aus W und m_T folgt $y_W = m_T x_W + b_T \Rightarrow b_T = y_W - m_T x_W$ Aus W und m_O folgt $y_W = m_O x_W + b_O \Rightarrow b_O = y_W - m_O x_W$			3			
		Summe:	5	10	0	-	
	<u> </u>	Summe:		15			Erreichte BE Endsumme Aufgabe 2

Aufa 2	Erwartete Teilleistung		В	E in A	B		Erbrachte Teilleistung
Aufg. 3	-		I	Ш	Ш	BE	Begutachtung
3.1	HB: $V(r,h) = \frac{1}{3}\pi r^2 h$			1			
	NB: $s^2 = r^2 + h^2$ $r^2 = s^2 - h^2 = 3, 6^2 - h^2$			1			
	ZF: $V(h) = \frac{1}{3}\pi(s^2 - h^2)h = \frac{3.6^2}{3}\pi h - \frac{1}{3}\pi h^3$ $V(h) = -\frac{1}{3}\pi h^3 + 4.32\pi h$			2	1		
3.2	$V'(h) = -\pi h^2 + 4,32\pi = 0$ $h_{1/2} = \pm \sqrt{4,32} \approx \pm 2,08$ Die negative Lösung ist nicht sinnvoll i.S.d.A.		1	2			
	$V''(h) = -2\pi h$ $V''(2,08) = -13,07 < 0 \implies \text{Maximum bei } h_1$			1 1			
	$r_1^2 = s^2 - h_1^2 = 3,6^2 - 2,08^2 \Rightarrow r_1 = 2,94$ Der Radius muss ca. 2,94 <i>m</i> betragen.			2			
3.3	$V(r,h) = \frac{1}{3}\pi r_1^2 h_1 = 18,83$ Das Volumen beträgt ca. 18,83 m^3 .		1				
3.4	$A = \pi r_{\rm i} s = 33,25$ Die Größe der Werbefläche beträgt ca. 33,25 m^2 .		1				
		Summe:	3	11	1	_	
		Summe:	15			Erreichte BE Endsumme Aufgabe 3	

Aufa 4	Envartata Taillaistung	BI	E in Al	В		Erbrachte Teilleistung
Aufg. 4	Erwartete Teilleistung	I	П	Ш	BE	Begutachtung
4.1	Es gibt eine Nullstelle im Intervall [8;9], da ein					
	Vorzeichenwechsel der Funktionswerte im Intervall	1		1		
	auftritt, denn $f(8) = 1$ und $f(9) = -1,6406$					
	mögliche Lösung mit dem Newtonschen Näherungsverfahren					
	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	1				
	$f'(x) = -\frac{3}{64}x^2 + \frac{3}{4}$	1				
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		3			
	8,415214 -0,0000005 -2,569492 8,415214					
	Die Nullstelle liegt bei. $x_n \approx 8,415214$. Genauigkeit: z. B. 6 Nachkommastellen stimmen überein.			1		
4.2	Ansatz für Flächeninhalt: $A_{1} = \int_{-4}^{8,4152} f(x)dx = \int_{-4}^{8,4152} (-\frac{1}{64}x^{3} + \frac{3}{4}x + 3)dx$	1	1			
	Stammfunktion: $F(x) = -\frac{1}{256}x^4 + \frac{3}{8}x^2 + 3x$		1			
	$A_1 = F(8,4152) - F(-4) = 32,2122 - (-7) = 39,2122FE$	2	1			
	Zwischensumme Aufg. 4.1 bis 4.3:	6	6	2		Übertrag ᠯ

Aufg. 4	Erwartete Teilleistung	BE	in Al	3		Erbrachte Teilleistung
Auig. 4	Liwartete remeistarig		Ш	Ш	BE	Begutachtung
	□ Übertrag:	6	6	2		
4.3	Aus $\int_{-4}^{b} f(x)dx = 24$ folgt					
	$F(b) - F(-4) = 24 \Leftrightarrow -\frac{1}{256}b^4 + \frac{3}{8}b^2 + 3b - 17 = 0$		2			
	Ermittlung der ersten Lösung b = 4 durch ein geeignetes Verfahren, z.B. durch Probieren in Kombination mit Flächenabschätzung Eine weitere Lösung für b müsste größer als 8,4152 (siehe 4.1) sein	2		1		
	und $39,2122 + \int\limits_{8,4152}^{3} f(x) dx = 24$ (Der Integralwert ist negativ, da die Fläche unterhalb der x-Achse liegt.)			2		
4.4	a) Schnittpunkte berechnen:					
	Aus $f(x) = g(x)$ folgt $-\frac{1}{64}x^3 + \frac{3}{4}x = x(-\frac{1}{64}x^2 + \frac{3}{4}) = 0$	2				
	$x_1 = 0; x_2 = \sqrt{48} \approx 6.93$ und $x_3 = -\sqrt{48} \approx -6.93$ Schnittpunkte: $P_1(0/3); P_2(6.93/3); P_3(-6.93/3)$	1	2			
	b)Flächenberechnung:					
	$A_2 = \int_0^{\sqrt{48}} (f(x) - g(x)) dx = \int_0^{\sqrt{48}} (-\frac{1}{64}x^3 + \frac{3}{4}x) dx$		2			
	Stammfunktion: $D(x) = -\frac{1}{256}x^4 + \frac{3}{8}x^2$	1				
	$A_2 = D(\sqrt{48}) = 9FE$		1			
	Summe:	12	13	5	*	
	Summe:		30			Erreichte BE Endsumme Aufgabe 4