Abschlussprüfung Fachoberschule 2017 Mathematik

Aufgabenvorschlag A

1 Funktionsuntersuchung

/41

Gegeben ist die Funktion f mit der Funktionsgleichung $f(x) = 0.01x^5 - 0.3x^3 + 2x$; $x \in IR$.

1.1 Beschreiben Sie das Verhalten des Graphen von *f* im Unendlichen und begründen Sie Ihre Aussagen.

/2

1.2 Untersuchen Sie den Graphen von *f* auf Symmetrie.

/6

Ergänzen Sie dann die folgende Tabelle:

X	– 5	-4	-3	-2	-1	0	1	2	3	4	5
f(x)							1,71	1,92	0,33	-0,96	3,75

Zeichnen Sie den Graphen von *f* anhand der Tabelle in das Koordinatensystem auf der folgenden Seite.

1.3 Bestimmen Sie alle Schnittpunkte des Graphen von *f* mit den Koordinatenachsen.

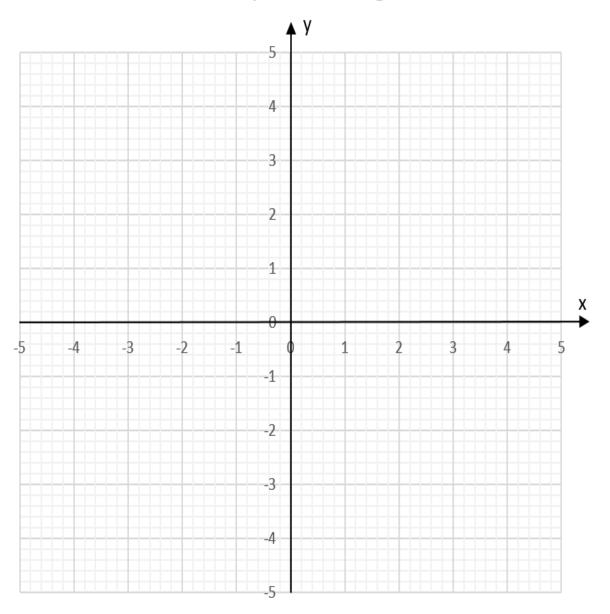
/9

1.4 Bestimmen Sie die relativen Extrempunkte des Graphen von *f*.

/12

1.5 Bestimmen Sie die Wendepunkte des Graphen von *f*.

/6


Weisen Sie nach, dass die Gerade mit der Gleichung t(x) = -0,8x + 3,52 die Tangente an den Graphen von f im Punkt P(2|f(2)) ist.
 Diese Tangente schneidet den Graphen von f in einem Punkt Q, der rechts von P liegt. Entscheiden Sie, ob der Punkt Q im I. oder im IV. Quadranten liegt.

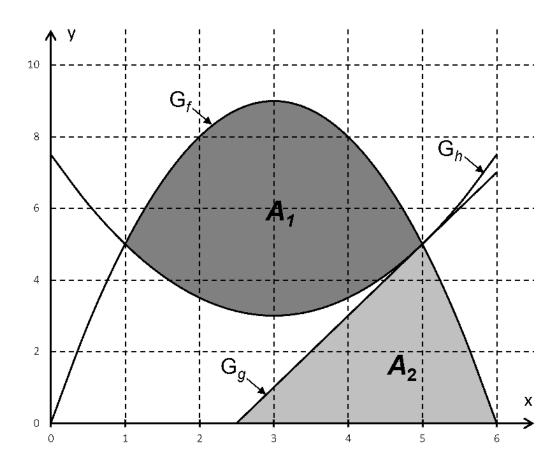
/6

Begründen Sie Ihre Entscheidung. Die Berechnung der Koordinaten des Schnittpunktes ist nicht erforderlich.

Mathematik A Land Berlin

Koordinatensystem zu Aufgabe 1.2

Mathematik A Land Berlin


2 Integralrechnung

/32

Gegeben sind die Funktionen f, g und h mit den Funktionsgleichungen

$$f(x) = -x^2 + 6x$$
, $g(x) = 2x - 5$ und $h(x) = 0.5x^2 - 3x + 7.5$; $x \in IR$.

Die Graphen G_f , G_g und G_h , und die Koordinatenachsen schließen die Flächen A_1 und A_2 ein (siehe Abbildung).

- 2.1 Berechnen Sie den Inhalt der Fläche, die von dem Graphen von f und der x-Achse eingeschlossen wird.
- Zeigen Sie rechnerisch, dass sich G_f und G_h an der Stelle x = 5 schneiden. /6
 Zeigen Sie rechnerisch, dass sich G_g und G_h an der Stelle x = 5 berühren.
- 2.3 Berechnen Sie die linke Schnittstelle von G_f und G_h .

 Berechnen Sie den Flächeninhalt der Fläche A_1 (dunkelgrau gefärbt),
 die von G_f und G_h eingeschlossen ist.
- 2.4 Berechnen Sie den Flächeninhalt der Fläche A_2 (hellgrau gefärbt), die von G_f und G_g und der x-Achse eingeschlossen ist.

Mathematik A Land Berlin

3 Stochastik /27

Der Gastgeber einer Party hat für seine Gäste ein besonderes Glücksspiel vorbereitet:

Zuerst wird mit einem sechsseitigen fairen Würfel einmal gewürfelt.

Ist das Ergebnis durch 3 teilbar, zieht der Spieler aus einer Urne mit 4 weißen und 6 grauen Kugeln zwei Kugeln ohne Zurücklegen.

Zeigt der Würfel keine durch 3 teilbare Zahl an, muss der Spieler aus derselben Urne zweimal mit Zurücklegen ziehen.

Nach Abschluss der Ziehung werden die gezogenen Kugeln betrachtet. Die Reihenfolge bleibt dabei unberücksichtigt.

- 3.1 Zeichnen Sie ein zu diesem Glücksspiel passendes Baumdiagramm und beschriften Sie das Diagramm vollständig.Geben Sie für jeden Pfad die Pfadwahrscheinlichkeit an.
- 3.2 Bestimmen Sie die Wahrscheinlichkeiten für folgende Ereignisse: /4
 - A: Es werden zwei weiße Kugeln gezogen.
 - *B*: Die Kugeln haben nicht die gleiche Farbe.
- 3.3 Es sei *E*: "Es wird mindestens eine weiße Kugel gezogen".

 Formulieren Sie das Gegenereignis zu *E*.

 Ermitteln Sie P(*E*).
- 3.4 Der Gastgeber möchte den Gästen für jede gezogene weiße Kugel 2 € und für /5 jede graue Kugel 0,50 € auszahlen.Mit welchen Kosten muss er pro Gast durchschnittlich rechnen?
- 3.5 Ein Gast sagt: "Beim Ziehen von zwei Kugeln aus dieser Urne ist die /5
 Wahrscheinlichkeit, mindestens eine weiße Kugel zu ziehen, nicht davon abhängig, ob mit oder ohne Zurücklegen gezogen wird. Der Wert ist in beiden Fällen gleich."

Untersuchen Sie, ob der Gast Recht hat.

Abschlussprüfung Fachoberschule 2016 Mathematik

Erwartungshorizont für Aufgabenvorschlag A

Teil-	Erwartete Teilleistung						
aufgabe							
1.1	Der höchste Exponent von x ist ungerade und der Leitkoeffizient positiv. Also gilt $x \rightarrow +\infty \Rightarrow f(x) \rightarrow +\infty \\ x \rightarrow -\infty \Rightarrow f(x) \rightarrow -\infty$						
1.2	Der Graph von <i>f</i> ist punktsymmetrisch zum Ursprung, da nur ungerade						
	Exponenten von x im Funktionsterm vorkommen. x -5 -4 -3 -2 -1 0 1 2 3 4 5			2			
	f(x) -3,75 0,96 -0,33 -1,92 -1,71 0 1,71 1,92 0,33 -0,96 3,75 Graph zeichnen Graph zu Aufgabe 1.2			2			
	5,0 4,0 3,0 2,0 1,0 0,0 0,0 1,0 2,0 3,0 3,0 4,0	2					
1.3	Achsenschnittpunkte bestimmen Schnittpunkt mit y-Achse $S_y(0 0)$ $0.01x^5 - 0.3x^3 + 2x = 0 \Rightarrow$ erste Nullstelle $x_{N1} = 0$ $0.01x^4 - 0.3x^4 + 2 = 0$ Substitution $x^2 = u$ $0.01u^2 - 0.3u + 2 = 0$	1	1				
	$u_1 = 20 \Rightarrow x_{\text{N2,N3}} \approx \pm 4,472$ $u_2 = 10 \Rightarrow x_{\text{N4,N5}} \approx \pm 3,162$ Angabe der Schnittpunkte mit der <i>x</i> -Achse	1	5				
1.4	Extrempunkte bestimmen $f'(x) = 0.05x^4 - 0.9x^2 + 2 = 0$ Substitution $x^2 = u \Rightarrow 0.05u^2 - 0.9u + 2 = 0$ $u_1 = 15,403 \Rightarrow x_{E2,E3} \approx \pm 3,925$ $u_2 = 2,5969 \Rightarrow x_{E4,E5} \approx \pm 1,611$		2				
	$f''(x) = 0.2x^3 - 1.8x$ $f''(-3.925) = -5.026 < 0$ und $f(-3.925) = +0.975 \Rightarrow HP(-3.925 +0.975)$ $f''(-1.611) = +2.064 > 0$ und $f(-1.611) = -2.076 \Rightarrow TP(-1.611 -2.076)$ aus Symmetriegründen gilt: $f''(+1.611) = -2.064 < 0$ und $f(+1.611) = +2.076 \Rightarrow HP(+1.611 +2.076)$		5				
		2	2				

Teil-	Erwartete Teilleistung			ΑВ
aufgabe		I	II	Ш
1.5	Wendepunkte bestimmen $0.2x^3 - 1.8x = 0$ erste Lösung $x_{W1} = 0$ $0.2x^2 - 1.8 = 0$ $x_{W2,W3} \approx \pm 3$ $f'''(x) = 0.6x^2 - 1.8$ $f'''(-3) = 3.6 \neq 0$ und $f(-3) = -0.33$ $\Rightarrow WP(-3 -0.33)$ $f'''(0) = -1.8 \neq 0$ und $f(0) = 0$ $\Rightarrow WP(0 0)$ aus Symmetriegründen gilt: $f'''(+3) = 3.6 \neq 0$ und $f(3) = +0.33$ $\Rightarrow WP(3 +0.33)$			
1.6	$t(2) = 1,92 = f(2)$ und $t'(2) = -0.8 = f'(2) \Rightarrow$ Die angegebene Gerade ist die Tangente an der Stelle 2 $t(x) = 0 \Leftrightarrow x = 4,4 \Rightarrow$ Die Nullstelle der angegebenen Gerade liegt links von der Nullstelle von f , wo $f(x)$ noch negativ ist und steigt. Also schneiden sich die Gerade und der Graph von f unterhalb der x -Achse im IV. Quadranten.			
	Mögliche BE	7	29	5
	Summe Aufgabe			

Teil-	Erwartete Teilleistung			AΒ
aufgabe		ı	II	Ш
2.1	$A = \int_{0}^{6} f(x)dx = F(6) - F(0)$	2		
	$F(x) = -\frac{1}{3}x^3 + 3x^2$; $F(6) = 36$; $F(0) = 0 \Rightarrow A = 36$	2	2	
2.2	$f(5) = 5 = h(5)$ \Rightarrow Schnittpunkt bei $x = 5$ $g(5) = 5 = h(5)$ und $g'(5) = 2 = h'(5)$ \Rightarrow Berührpunkt bei $x = 5$		2 2	2
2.3	Differenzfunktion $d(x) = f(x) - h(x) = -1.5x^2 + 9x - 7.5$ $d(x) = 0 = -1.5x^2 + 9x - 7.5$ Lösungen: $x_1 = 1$ (linke Schnittstelle von G_f und G_h) und $x_2 = 5$		3	
	$\begin{vmatrix} A_1 = \left \int_1^5 d(x) dx \right = \left D(5) - D(1) \right \\ D(x) = -0.5x^3 + 4.5x^2 - 7.5x; \ D(1) = -3.5; \ D(5) = 12.5 \Rightarrow A_1 = 16 \end{vmatrix}$	2	2	
2.4	A_2 wird durch eine Senkrechte an der Stelle 5 in zwei Teilflächen zerlegt Die Nullstelle von g ist $2,5 \Rightarrow$ Grundseite Dreieck = 5 - $2,5$ = $2,5$ $g(5) = 5 \Rightarrow$ Höhe Dreieck = $5 \Rightarrow$ Fläche Dreieck $A_{21} = 6,25$ FE		2	2
	$A_{22} = \left \int_{5}^{6} f(x) dx \right = F(6) - F(5) $	2		
	$F(x) = -\frac{1}{3}x^3 + 3x^2$; $F(6) = 36$; $F(5) \approx 33,333 \Rightarrow$			
	$A_{22} \approx 2,67 \text{ FE} \Rightarrow A_2 \approx 8,92 \text{ FE}$	2	2	
	Mögliche BE	13	15	4
	Summe Aufgabe		32	

Teil-	Erwartete Teilleistung	ВЕ	in A	ΑВ
Aufgabe		I	П	Ш
3.1	$\frac{\frac{3}{9}}{10} \circ (O O) \qquad \frac{12}{270} = \frac{2}{45}$ $\frac{4}{10} \circ (O O) \qquad \frac{24}{270} = \frac{4}{45}$ $\frac{4}{9} \circ (O O) \qquad \frac{24}{270} = \frac{4}{45}$ $\frac{5}{9} \circ (O O) \qquad \frac{30}{270} = \frac{1}{9}$ $\frac{4}{10} \circ (O O) \qquad \frac{32}{300} = \frac{8}{75}$ $\frac{4}{10} \circ (O O) \qquad \frac{48}{300} = \frac{12}{75}$ $\frac{4}{10} \circ (O O) \qquad \frac{48}{300} = \frac{12}{75}$ $\frac{4}{10} \circ (O O) \qquad \frac{48}{300} = \frac{12}{75}$			
	Dreistufiges Baumdiagramm mit acht Zweigen Angabe aller Zweigwahrscheinlichkeiten Angabe aller Pfadwahrscheinlichkeiten	2 2	1 4	
3.2	$P(A) = P("ww") = \frac{12}{270} + \frac{32}{300} = \frac{136}{900} = \frac{34}{225}$ $P(B) = P("wg") + P("gw") = \frac{24}{270} + \frac{48}{300} + \frac{24}{270} + \frac{48}{300} = \frac{448}{900} = \frac{112}{225}$	2		
3.3	<i>E</i> : "Es wird mindestens eine weiße Kugel gezogen" \overline{E} : "Es wird keine weiße Kugel gezogen.", d. h. "Es werden zwei graue Kugeln gezogen." $P(\overline{E}) = P("gg") = \frac{30}{270} + \frac{72}{300} = \frac{316}{900} = \frac{79}{225}$ $P(E) = 1 - P(\overline{E}) = 1 - \frac{79}{225} = \frac{146}{225}$ (Hier ist auch die alternative Berechnung $P(E) = P(A) + P(B)$ möglich.)		1 3	

	Ergebnis	"ww"	"wg" oder "gw"	"gg"			
		136	448	316			
	Wahrscheinlichkeit	900	900	900			
	Auszahlung in €	4,00	2,50	1,00		3	
	Kostenerwartung: K Der Gastgeber muss pr rechnen.					2	
3.5	Der Gast hat Unrecht. Ziehen ohne Zurücklege	en:					
	$P(E) = 1 - P(\overline{E}) = 1 - P("gg") = 1 - \frac{6}{10} \cdot \frac{5}{9} = \frac{60}{90} = \frac{2}{3} \approx 66,7\%$						
	Ziehen mit Zurücklegen:						
	$P(E) = 1 - P(\overline{E})$	=1-P("gg")=1-	$-\frac{6}{10} \cdot \frac{6}{10} = \frac{64}{100} = \frac{1}{2}$	$\frac{6}{5} = 64\%$			
	Beim Ziehen ohne Zurü	-		stens eine weiße			
	Kugel etwas größer als beim Ziehen mit Zurücklegen.						5
	Mögliche BE				8	14	5
	Summe Aufgabe					27	