Seite 1 von 4

Beispielaufgabe Abiturprüfung 2021

Mathematik, Leistungskurs

Prüfungsteil B: Aufgaben mit Hilfsmitteln

Aufgabenstellung

Gegeben ist eine Schar von **ganzrationalen** Funktionen $f_{\boldsymbol{k}}$ durch die Funktionsgleichung

$$f_k(x) = e^{-k} \cdot ((x-k)^3 - 3 \cdot (x-k) + k^2), \ x \in \mathbb{R} \text{ mit } k \ge -0.5.$$

Die Graphen von f_k für k = -0.5, k = 1 und k = 2 sind in der Abbildung 1 dargestellt.

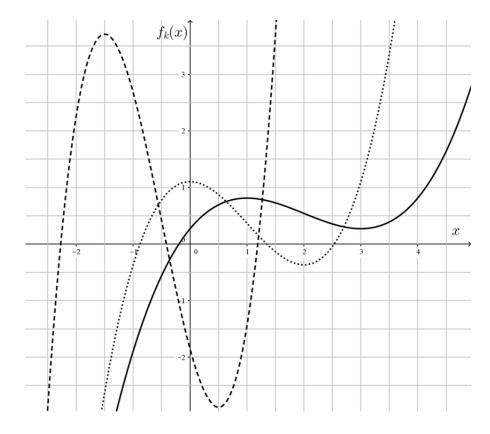


Abbildung 1

M LK Analysis GTR

Seite 2 von 4

- a) (1) Skizzieren Sie den Graphen von f_0 im Intervall [-2;2] in Abbildung 1.
 - (2) Der Graph von f_0 schließt mit der x-Achse im zweiten Quadranten die Fläche A_0 ein. Bestimmen Sie rechnerisch die Größe dieser Fläche. [Zur Kontrolle: $A_0 = 2,25$ FE]
 - (3) Gegeben ist die Gerade g mit der Funktionsgleichung g(x) = -2x, $x \in \mathbb{R}$.

 Bestimmen Sie das Verhältnis, in dem die Gerade g die Fläche A_0 aus (2) teilt.

 (2 + 5 + 4 Punkte)
- b) Der lokale Hochpunkt des Graphen von f_k ist in Abhängigkeit von k gegeben durch $H_k(k-1|e^{-k}\cdot(2+k^2))$.

Ermitteln Sie den Wert von k mit $-0.5 \le k \le 10$, für den der Abstand des Hochpunktes H_k zum Ursprung minimal ist.

(4 Punkte)

c) (1) Bestimmen Sie rechnerisch die Koordinaten des Wendepunktes des Graphen von f_k in Abhängigkeit von k.

[Zur Kontrolle: Für die x-Koordinate des Wendpunktes gilt $x_w = k$.]

Auf dem Graphen der Funktion w mit $w(x) = e^{-x} \cdot x^2$, $x \ge -0.5$ liegen die Wendepunkte der Graphen von f_k mit $k \ge -0.5$. Den Graphen von w nennt man Ortskurve der Wendepunkte der Funktionenschar.

- (2) Bestimmen Sie rechnerisch das globale Maximum von w. Hierbei darf ohne Nachweis $w''(x) = (x^2 - 4x + 2) \cdot e^{-x}$ verwendet werden.
- (3) Gegeben sei die Funktion j mit der Gleichung $j(x) = 3 \cdot e^{-(x-2)} \cdot (x-2)^2$, $x \in \mathbb{R}$. Der Graph dieser Funktion ist die Ortskurve der Wendepunkte einer weiteren Funktionenschar v_k mit $k \in \mathbb{R}$.

Geben Sie eine Funktionsgleichung dieser Funktionenschar v_k an.

(5 + 7 + 2 Punkte)

M LK Analysis GTR

Seite 3 von 4

Name:	
-------	--

Im Folgenden wird die Abkühlung eines Bechers Kaffee bei einer Raumtemperatur von 18 °C in Abhängigkeit von der Zeit untersucht. Dazu wird die Temperatur des Kaffees in Grad Celsius in Abhängigkeit von der Zeit in Minuten bestimmt. Die Tabelle gibt zwei der Messergebnisse an.

Zeit in Minuten	1	10
Temperatur in Grad Celsius	71	51

d) Der Abkühlvorgang in den ersten 10 Minuten soll durch eine Funktion u_1 mit $u_1(t) = a + b \cdot e^{-c \cdot t}$, $a, b, c \in \mathbb{R}$, c > 0 mit $0 \le t \le 10$ modelliert werden.

Dabei gibt u_1 die Temperatur des Kaffees in Grad Celsius an und t die Zeit seit Beginn der Untersuchung in Minuten.

Begründen Sie, dass a = 18 gilt und bestimmen Sie dann die Werte von b und c ausgehend von den Angaben in der Tabelle.

[Kontrolllösung mit gerundeten Werten: $u_1(t) = 18 + 55, 86 \cdot e^{-0.053 \cdot t}$]

(5 Punkte)

Nach 10 Minuten wird dem Kaffee kalte Milch zugefügt und die Temperatur der Mischung im Anschluss daran noch weitere 15 Minuten gemessen. Zum Zeitpunkt t = 11 liegt bereits eine gleichmäßige Kaffee-Milch-Mischung vor.

e) Für den Zeitraum $11 \le t \le 25$ also für den Zeitraum nach der Zugabe der kalten Milch lässt sich der Abkühlvorgang der Mischung näherungsweise durch die Funktion u_2 mit $u_2(t) = 18 + 36 \cdot e^{-0.033 \cdot t}$, $11 \le t \le 25$ modellieren.

Dabei gibt u_2 die Temperatur der Mischung in Grad Celsius und t die Zeit in Minuten seit Beginn der Untersuchung an. Der Graph von u_2 ist monoton fallend.

- (1) Bestimmen Sie, wie lange es ab dem Zeitpunkt t = 11 dauert, bis die Temperatur im Kaffeebecher unter 41 °C sinkt.
- (2) Bestimmen Sie die mittlere Temperaturänderung des Kaffees im Zeitraum 0≤t≤10 vor der Milchzugabe und im Zeitraum 11≤t≤21 nach der Milchzugabe. Vergleichen Sie die Ergebnisse im Sachkontext.

(2 + 4 Punkte)

Ministerium für Schule und Bildung des Landes Nordrhein-Westfalen

M LK Analysis GTR

Seite 4 von 4

Zugelassene Hilfsmittel:

- GTR (Grafikfähiger Taschenrechner)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Unterlagen für die Lehrkraft

Beispielaufgabe Abiturprüfung 2021

Mathematik, Leistungskurs

Prüfungsteil B: Aufgaben mit Hilfsmitteln

1. Aufgabenart / Inhaltsbereich

Innermathematische Argumentationsaufgabe / Aufgabe mit realitätsnahem Kontext / Analysis

2. Aufgabenstellung¹

siehe Prüfungsaufgabe

3. Materialgrundlage

entfällt

4. Bezüge zu den Kernlehrplänen und den Vorgaben 2021

Die Aufgaben weisen vielfältige Bezüge zu Kompetenzbereichen und Inhaltsfeldern des Kernlehrplans bzw. zu den in den Vorgaben ausgewiesenen Fokussierungen auf. Im Folgenden wird auf Bezüge von zentraler Bedeutung hingewiesen.

- 1. Inhaltsfelder und inhaltliche Schwerpunkte Funktionen und Analysis
 - Funktionen als mathematische Modelle
 - Fortführung der Differentialrechnung
 - Behandlung von ganzrationalen Funktionen, natürlicher Exponential- und Logarithmusfunktion und deren Verknüpfungen bzw. Verkettungen mit Untersuchung von Eigenschaften in Abhängigkeit von Parametern
 - notwendige Ableitungsregeln (Produkt-, Kettenregel)
 - Grundverständnis des Integralbegriffs
 - Integralrechnung

2. Medien/Materialien:

entfällt

5. Zugelassene Hilfsmittel

- GTR (Grafikfähiger Taschenrechner)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

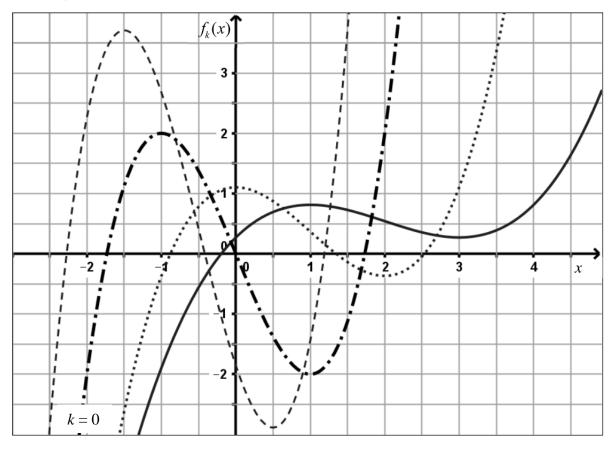
Die Aufgabenstellung deckt inhaltlich alle drei Anforderungsbereiche ab.

6. Modelllösungen

Die jeweilige Modelllösung stellt eine mögliche Lösung bzw. Lösungsskizze dar. Der gewählte Lösungsansatz und -weg der Prüflinge muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet (Bewertungsbogen: Zeile "Sachlich richtige Lösungsalternative zur Modelllösung").

Teilaufgabe a)

(1) Es gilt $f_0(x) = x^3 - 3x$.



(2) Nullstellen von f_0 : $f_0(x) = 0 \Leftrightarrow x = -\sqrt{3} \lor x = 0 \lor x = \sqrt{3}$.

Wegen $f_0(-1) = 2$ liegt die im zweiten Quadranten eingeschlossene Fläche oberhalb der x-Achse.

$$F_0$$
 mit $F_0(x) = \frac{1}{4}x^4 - \frac{3}{2}x^2$ ist eine Stammfunktion von f_0 .

Die Größe der eingeschlossenen Fläche im zweiten Quadranten ist durch

$$A_0 = \int_{-\sqrt{3}}^{0} f_0(x) dx = [F_0(x)]_{-\sqrt{3}}^{0} = F_0(0) - F_0(-\sqrt{3}) = 2{,}25 \text{ [FE] berechenbar.}$$

(3) Die Schnittstellen der Graphen von f_0 und g sind -1, 0 und 1.

Man erkennt in der Abbildung, dass die Gerade somit von -1 bis 0 unterhalb des Graphen von f_0 verläuft.

Für die Größe der von den Graphen von f_0 und g im zweiten Quadranten eingeschlossenen Fläche gilt somit $\int_{-1}^{0} (f_0(x) - g(x)) dx = 0,25$.

 $\frac{0,25}{2,25} = \frac{1}{9}$. Das Verhältnis der beiden Teilflächen ist 8:1.

Teilaufgabe b)

Für den gesuchten Abstand gilt: $d(k) = \sqrt{(k-1)^2 + (e^{-k} \cdot (2+k^2))^2}$.

Gesucht ist der Wert k mit $-0.5 \le k \le 10$, für den der Abstand d(k) minimal ist.

Der Taschenrechner liefert $k \approx 1,3$.

[Auch eine grafische Analyse des Graphen von d mit dem Taschenrechner ist vorstellbar.]

Teilaufgabe c)

- (1) Es gilt f_k ' $(x) = e^{-k} \cdot (3 \cdot (x k)^2 3)$, f_k '' $(x) = e^{-k} \cdot 6 \cdot (x k)$ und f_k ''' $(x) = 6 \cdot e^{-k}$.

 Die für eine Wendestelle von f_k notwendige Bedingung f_k ''(x) = 0 ist für x = k erfüllt.

 Mit f_k '''(k) > 0 und $f_k(k) = e^{-k} \cdot k^2$ hat f_k den Wendepunkt $W_k(k \mid e^{-k} \cdot k^2)$.
- (2) $w'(x) = (-1) \cdot x^2 \cdot e^{-x} + 2x \cdot e^{-x} = e^{-x} \cdot (-x^2 + 2x)$. Die für lokale Extremstellen von w notwendige Bedingung $w'(x) = e^{-x} \cdot (-x^2 + 2x) = 0$ ist für x = 0 und x = 2 erfüllt.

Wegen w''(0) = 2 > 0 und $w''(2) = -2e^{-2} < 0$ und $w(2) = 4e^{-2}$ hat w den lokalen Hochpunkt $H(2 \mid 4e^{-2})$.

Da es nur die zwei berechneten lokalen Extremstellen gibt und der lokale Hochpunkt bei der rechten Extremstelle liegt, reicht die Betrachtung des Funktionswertes an der linken Randstelle.

Mit $w(-0.5) = e^{0.5} \cdot (-0.5)^2 \approx 0.41 < 4 \cdot e^{-2} \approx 0.54$ ist $4e^{-2}$ das globale Maximum.

(3) Eine Funktionsgleichung von v_k ist gegeben durch

$$v_k(x) = 3 \cdot f_k(x-2)$$
 $\left[= 3 \cdot e^{-k} \cdot \left(\left(x - 2 - k \right)^3 - 3 \cdot \left(x - 2 - k \right) + k^2 \right) \right].$

Teilaufgabe d)

Langfristig nähert sich die Temperatur des Kaffees der Umgebungstemperatur von 18 °C an. Somit gilt für c > 0: $\lim_{t \to \infty} u_1(t) = a = 18$.

Aus $53 = b \cdot e^{-0.053}$ folgt $b \approx 55.86$ und damit $u_1(t) = 18 + 55.86 \cdot e^{-0.053 \cdot t}$.

Teilaufgabe e)

(1)
$$u_2(t) = 18 + 36 \cdot e^{-0.033 \cdot t} = 41 \stackrel{GTR}{\Rightarrow} t \approx 13.6$$
.

Ab dem Zeitpunkt t = 11 dauert es etwa 2,6 Minuten, bis die Temperatur des Kaffees unter 41 °C sinkt.

(2)
$$\frac{u_{1}(10) - u_{1}(0)}{10 - 0} \approx -2,30 \left[{^{\circ}C}_{\min} \right],$$

$$\frac{u_{2}(21) - u_{2}(11)}{21 - 11} \approx -0,70 \left[{^{\circ}C}_{\min} \right].$$

Die mittlere Temperaturänderung des Kaffees pro Minute vor der Milchzugabe ist deutlich größer als die mittlere Temperaturänderung der Mischung nach der Milchzugabe.

7. Teilleistungen – Kriterien / Bewertungsb	ogen zur Prüfungsarbeit
Name des Prüflings:	Kursbezeichnung:
Schule:	

Teilaufgabe a)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK ²	ZK	DK
1	(1) skizziert den Graphen von f_0 in Abbildung 1.	2			
2	(2) bestimmt die erforderlichen Nullstellen als Integrationsgrenzen und gibt eine Stammfunktion an.	3			
3	(2) bestimmt rechnerisch die Größe der Fläche.	2			
4	(3) bestimmt die Größe der von den Graphen $von f_0$ und g eingeschlossenen Fläche im zweiten Quadranten.	3			
5	(3) bestimmt das Verhältnis, in dem die Gerade die Fläche A_0 teilt.	1			
Sach	ich richtige Lösungsalternative zur Modelllösung: (11)				
Sum	me Teilaufgabe a)	11			

Teilaufgabe b)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	ermittelt den Wert von k , für den der Abstand des Hochpunktes zum Ursprung minimal ist.	4			
Sach	lich richtige Lösungsalternative zur Modelllösung: (4)				
Sum	me Teilaufgabe b)	4			

² EK = Erstkorrektur; ZK = Zweitkorrektur; DK = Drittkorrektur

Teilaufgabe c)

	Anforderungen		Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK	
1	(1) gibt die erforderlichen Ableitungen an.	2				
2	(1) bestimmt rechnerisch die Koordinaten des Wendepunktes des Graphen von f_k in Abhängigkeit von k .	3				
3	(2) gibt einen Funktionsterm von w'an und bestimmt die möglichen Extremstellen mit einer notwendigen Bedingung.	3				
4	(2) bestätigt den lokalen Hochpunkt mit einer hinreichenden Bedingung und gibt den Funktionswert an.	2				
5	(2) berücksichtigt die Randstelle und bestimmt das globale Maximum von <i>w</i> .	2				
6	(3) gibt eine Funktionsgleichung dieser Funktionenschar an.	2				
Sach	lich richtige Lösungsalternative zur Modelllösung: (14)					
Sum	me Teilaufgabe c)	14				

Teilaufgabe d)

	Anforderungen	Lösungsqualität		•	
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	begründet, dass $a = 18$ gilt.	1			
2	bestimmt die Werte von b und c .	4			
Sach	lich richtige Lösungsalternative zur Modelllösung: (5)				
Sum	me Teilaufgabe d)	5			

Teilaufgabe e)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	(1) bestimmt, wie lange es ab dem Zeitpunkt $t = 11$ dauert, bis die Temperatur unter 41 °C sinkt.	2			
2	(2) bestimmt die mittleren Temperaturänderungen des Kaffees in den angegebenen Zeiträumen.	3			
3	(2) vergleicht die Ergebnisse im Sachkontext.	1			
Sach	lich richtige Lösungsalternative zur Modelllösung: (6)				
Sum	me Teilaufgabe e)	6			

Summe insgesamt 40

Name:				

Beispielaufgabe Abiturprüfung 2021

Mathematik, Leistungskurs

Prüfungsteil B: Aufgaben mit Hilfsmitteln

Aufgabenstellung:

In einer Anlage zur Getränkeabfüllung werden zwei Maschinen zur Abfüllung von 330 ml-Flaschen betrieben. Bei einer Kontrolle werden je 20 Flaschen stichprobenartig entnommen und die tatsächlichen Füllmengen gemessen. Die Häufigkeiten der auf 1 ml gerundeten Messwerte sind in den folgenden Tabellen aufgeführt.

Maschine A

Füllmenge in ml	327	328	329	330	331	332	333
Häufigkeit	1	1	4	9	2	2	1

Maschine B

Füllmenge in ml	327	328	329	330	331	332	333
Häufigkeit	0	2	3	10	3	2	0

a) Um zu beurteilen, ob eine Maschine gut arbeitet, werden der Mittelwert und die Streuung berücksichtigt. Eine Maschine arbeitet umso besser, je näher die Abfüllung im Mittel am Wert 330 ml liegt und je kleiner die Streuung ist.

Für die Maschine A beträgt der Mittelwert 330 ml und die Standardabweichung etwa 1,34 ml.

Beurteilen Sie rechnerisch, welche Maschine besser arbeitet.

(4 Punkte)

Eine Flasche, in die gerundet weniger als 330 ml abgefüllt werden, wird im Kontext dieser Aufgabe als Minderbefüllung bezeichnet.

Im Folgenden wird Maschine A näher betrachtet.

Es sollen nun 100 zufällig ausgewählte Flaschen dieser Maschine untersucht werden. Die Zufallsgröße X: "Anzahl der Minderbefüllungen" in einer Stichprobe wird als binomialverteilt angenommen mit p=0,3.

b)

- (1) Es sei E das Ereignis: "Es treten genau 25 Minderbefüllungen auf".

 Entscheiden Sie, welcher der folgenden Ansätze zur Berechnung der Wahrscheinlichkeit für das Eintreten des Ereignisses E genutzt werden kann und erläutern Sie die einzelnen
 - (I) $P(E) = 0.3^{25} \cdot 0.7^{75}$

(II)
$$P(E) = \binom{100}{25} \cdot 0,3^{25} \cdot 0,7^{75}$$

Bestandteile dieses ausgewählten Ansatzes.

(III)
$$P(E) = \frac{100}{25} \cdot 0.3^{25} \cdot 0.7^{75}$$

(IV)
$$P(E) = 25 \cdot 0.3 + 75 \cdot 0.7$$

(2) Bestimmen Sie die Wahrscheinlichkeit für das Ereignis "Es treten weniger als 30 Minderbefüllungen auf."

(3 + 2 Punkte)

- c) Der verantwortliche Maschinenmeister hat die Vermutung, dass die Maschine A eigentlich besser arbeitet als die Stichprobe ergeben hat. Mit der Wahl von H_0 : $p \ge 0,3$ als Nullhypothese soll die Vermutung überprüft werden.
 - (1) Ermitteln Sie eine zur Nullhypothese passende Entscheidungsregel auf dem Signifikanzniveau von $\alpha = 0.05$.
 - (2) Beschreiben Sie den Fehler 2. Art im Sachzusammenhang.

(4 + 2 Punkte)

Name:

- d) Der Getränkehersteller schafft eine weitere Maschine an. Im Folgenden wird die Füllmenge nicht gerundet betrachtet. Es wird davon ausgegangen, dass die Füllmengen aller Flaschen jeweils unabhängig voneinander sind. Die stetige Zufallsgröße Y: "Füllmenge einer zufällig ausgewählten in dieser Maschine abgefüllten Flasche" wird normalverteilt mit dem Erwartungswert $\mu = 331$ [ml] und der Standardabweichung $\sigma = 1,34$ [ml] angenommen. Eine Befüllung mit höchstens 327 ml wird im Folgenden als gravierende Minderbefüllung bezeichnet.
 - (1) Bestimmen Sie die Wahrscheinlichkeit, dass eine zufällig entnommene Flasche mit höchstens 327 ml befüllt wurde, also eine gravierende Minderbefüllung ist. Geben Sie Ihr Ergebnis auf fünf Nachkommastellen gerundet an.
 [Kontrolllösung mit vier Nachkommastellen: 0,0014]
 - (2) Ermitteln Sie die durchschnittlich zu erwartende Anzahl von gravierenden Minderbefüllungen in einer Stichprobe von 1500 Flaschen.
 - (3) Ermitteln Sie die Wahrscheinlichkeit, dass eine Stichprobe von 750 Flaschen mehr als zwei gravierende Minderbefüllungen enthält.
 - (4) Der Getränkehersteller ändert die Parameter der Maschine so, dass $\mu_{neu} = 330$ [ml] und $\sigma_{neu} = 1,00$ [ml] gilt.

Interpretieren Sie die veränderten Parameter im Sachkontext.
Beurteilen Sie, wie sich die Wahrscheinlichkeit, dass eine zufällig ausgewählte Flasche eine gravierende Minderbefüllung ist, durch die Änderung der Parameter verändert.

(2 + 2 + 2 + 4) Punkte

Zugelassene Hilfsmittel:

- GTR (Grafikfähiger Taschenrechner)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Unterlagen für die Lehrkraft

Beispielaufgaben Abiturprüfung 2021

Mathematik, Leistungskurs

Prüfungsteil B: Aufgaben mit Hilfsmitteln

1. Aufgabenart

Aufgabe mit realitätsnahem Kontext / Stochastik

2. Aufgabenstellung¹

siehe Prüfungsaufgabe

3. Materialgrundlage

entfällt

4. Bezüge zu den Kernlehrplänen und den Vorgaben 2021

Die Aufgaben weisen vielfältige Bezüge zu Kompetenzbereichen und Inhaltsfeldern des Kernlehrplans bzw. zu den in den Vorgaben ausgewiesenen Fokussierungen auf. Im Folgenden wird auf Bezüge von zentraler Bedeutung hingewiesen.

- 1. Inhaltsfelder und inhaltliche Schwerpunkte
 - Stochastik
 - Kenngrößen von Wahrscheinlichkeitsverteilungen
 - Binomialverteilung und Normalverteilung
 - Testen von Hypothesen
- 2. Medien/ Materialien
 - Entfällt

5. Zugelassene Hilfsmittel

- GTR (Grafikfähiger Taschenrechner)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Die Aufgabenstellung deckt inhaltlich alle drei Anforderungsbereiche ab.

6. Modelllösungen

Die jeweilige Modelllösung stellt eine mögliche Lösung bzw. Lösungsskizze dar. Der gewählte Lösungsansatz und -weg der Prüflinge muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet (Bewertungsbogen: Zeile "Sachlich richtige Lösungsalternative zur Modelllösung").

Teilaufgabe a)

Es ist
$$\overline{x}_B = \frac{2 \cdot 328 + 3 \cdot 329 + 10 \cdot 330 + 3 \cdot 331 + 2 \cdot 332}{20} = 330$$
 [ml] $= \overline{x}_A$, daher wird die Streu-

ung in Form der Standardabweichung untersucht.

Es ist
$$s_A \approx 1.34$$
 [ml] und $s_B = \sqrt{\frac{2 \cdot (330 - 328)^2 + ... + 2 \cdot (330 - 332)^2}{20}} \approx 1.05$ [ml].

Daher kommt man aufgrund der Stichprobe zu dem Urteil, dass Maschine B besser arbeitet.

Teilaufgabe b)

- (1) Für die Berechnung des Ereignisses kann [ausschließlich] der Ansatz (II) verwendet werden. Dabei steht P(E) für die Eintrittswahrscheinlichkeit des Ereignisses E. Der Binomialkoeffizient $\binom{100}{25}$ gibt die Anzahl der Möglichkeiten an, wie die 25 Minderbefüllungen bei den 100 Flaschen verteilt sein können. $0,3^{25}$ gibt die Wahrscheinlichkeit für 25 Minderbefüllungen und $0,7^{75}$ die Wahrscheinlichkeit für 75 nicht minderbefüllte Flaschen an.
- (2) [Die Zufallsgröße X ist binomialverteilt mit n = 100 und p = 0,3.] Es ist $P_{100;0,3}(X < 30) = P_{100;0,3}(X \le 29) \approx 0,462$. Mit einer Wahrscheinlichkeit von ungefähr 46,2 % treten weniger als 30 Minderbefüllungen auf.

Teilaufgabe c)

(1) Definiere z.B. eine Funktion f mit $f(a) = P_{100;0,3}(X \le a)$, $0 \le a \le 100$ und bestimme die Lösung der Gleichung f(a) = 0,05. Der TR liefert $a \approx 23$ [für $0 \le a \le 100$].

Es gilt
$$P_{100;0,3}(X \le 22) \approx 0,048 < 0,05 \text{ und } P_{100;0,3}(X \le 23) \approx 0,076 > 0,05$$
.

Als Entscheidungsregel ergibt sich in diesem Fall: Verwirf die Nullhypothese, falls $X \le 22$, also 22 oder weniger Flaschen Minderbefüllungen sind.

(2) Ein Fehler 2. Art wird begangen, wenn die Nullhypothese aufgrund des Ausgangs des Zufallsexperimentes beibehalten wird, obwohl sie in Wirklichkeit aber falsch ist. Der Maschinenmeister würde nun also fälschlicherweise davon ausgehen, dass die Maschine tatsächlich nicht so gut, wie von ihm vermutet, arbeitet.

Teilaufgabe d)

- (1) *Y* ist normalverteilt mit $\mu = 331$ [ml] und $\sigma = 1,34$ [ml]. Es ist $P(Y \le 327) \approx 0,00142$. Die Wahrscheinlichkeit beträgt etwa 0,142 %.
- (2) Die Zufallsgrößer Z gibt die Anzahl gravierender Minderbefüllungen in einer Stichprobe von n Flaschen an. Z ist binomialverteilt mit n = 1500 und p = 0,00142. Für den Erwartungswert von Z gilt: E(Z) = n ⋅ p = 1500 ⋅ 0,00142 = 2,13. In der Stichprobe kann man durchschnittlich zwei gravierende Minderbefüllungen erwarten.
- (3) Z ist nun binomialverteilt mit n = 750 und p = 0,00142. $P_{750:0.00142}(Z \ge 3) \approx 0,0925 = 9,25\%$. Die Wahrscheinlichkeit beträgt etwa 9,25 %.
- (4) Da $\mu_{neu} = 330$ [ml], kann der Getränkehersteller bei der Befüllung der Flaschen Ressourcen sparen. Die Flaschen werden aber auch genauer befüllt, da $\sigma_{neu} = 1,00$ [ml]. Y ist nun normalverteilt mit $\mu_{neu} = 330$ [ml] und $\sigma_{neu} = 1,00$ [ml]. Die Wahrscheinlichkeit für eine Befüllung unter 327 ml sinkt auf $P_{neu}(Y \le 327) \approx 0,00135$ [= 0,135%].

7. Teilleistungen – Kriterien / Bewertungsboge	en zur Prufungsarbeit
Name des Prüflings:	Kursbezeichnung:
Schule:	

Teilaufgabe a)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK ²	ZK	DK
1	bestimmt den Mittelwert.	1			
2	bestimmt die Standardabweichung.	2			
3	beurteilt, welche Maschine besser arbeitet.	1			
Sach	lich richtige Lösungsalternative zur Modelllösung: (4)				
Sum	me Teilaufgabe a)	4			

Teilaufgabe b)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	(1) entscheidet sich für den richtigen Ansatz.	1			
2	(1) erläutert die einzelnen Bestandteile des Ansatzes.	2			
3	(2) bestimmt die gesuchte Wahrscheinlichkeit.	2			
Sach	lich richtige Lösungsalternative zur Modelllösung: (5)				
Sum	me Teilaufgabe b)	5			

² EK = Erstkorrektur; ZK = Zweitkorrektur; DK = Drittkorrektur

Seite 5 von 5

Teilaufgabe c)

	Anforderungen		Lösungs	squalität	
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	(1) ermittelt eine zur Nullhypothese passende Entscheidungsregel.	4			
2	(2) beschreibt den Fehler 2. Art im Sachzusammenhang.	2			
Sach	lich richtige Lösungsalternative zur Modelllösung: (6)				
Sum	me Teilaufgabe c)	6			

Teilaufgabe d)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	(1) bestimmt die gesuchte Wahrscheinlichkeit und gibt diese auf fünf Nachkommastellen gerundet an.	2			
2	(2) ermittelt die durchschnittlich zu erwartende Anzahl von gravierenden Minderbefüllungen in der Stichprobe.	2			
3	(3) ermittelt die Wahrscheinlichkeit, dass die Stichprobe mehr als zwei gravierende Minderbefüllungen enthält.	2			
4	(4) interpretiert die veränderten Parameter im Sachkontext.	2			
5	(4) beurteilt, wie sich die Wahrscheinlichkeit, dass eine zufällig ausgewählte Flasche eine gravierende Minderbefüllung ist, durch die Änderung der Parameter verändert.	2			
Sach	ich richtige Lösungsalternative zur Modelllösung: (10)				
Sum	me Teilaufgabe d)	10			

Summe insgesamt 25

Beispielaufgabe Abiturprüfung 2021

Mathematik, Leistungskurs

Prüfungsteil B: Aufgaben mit Hilfsmitteln

Aufgabenstellung

Abbildung 1

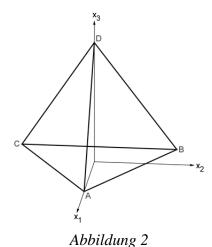
In Bottrop im Ruhrgebiet steht auf einer Kohle-Abraumhalde das Kunstwerk "Haldenereignis Emscherblick" – im Folgenden kurz als Kunstwerk bezeichnet (siehe *Abbildung 1*). Das Kunstwerk hat die Form einer Pyramide, die von vier gleichseitigen zueinander kongruenten Dreiecken begrenzt wird (regelmäßiges Tetraeder). Eines der Dreiecke bildet die Grundfläche der Pyramide. Die Kantenlänge beträgt jeweils 60 m. Das Kunstwerk steht auf vier 9 m hohen Betonpfeilern. Um das Kunstwerk begehen zu können, sind in die Konstruktion Treppen und Aussichtsplattformen eingearbeitet.

Name: _____

Vereinfachend wird das Kunstwerk im Folgenden durch eine näherungsweise regelmäßige Pyramide *ABCD* mit Eckpunkten mit ganzzahligen Koordinaten modelliert. Der Ursprung des Koordinatensystems befindet sich im Schwerpunkt des Dreiecks *ABC* (siehe *Abbildung 2*), welches die Grundfläche der Pyramide bildet. Die Eckpunkte der Pyramide haben in diesem Modell die Koordinaten

$$A (35|0|0); B (-17|30|0); C (-17|-30|0); D (0|0|49).$$

Dabei entspricht eine Längeneinheit im Modell einem Meter [m].



- a) (1) Begründen Sie, dass die Grundfläche ABC der Pyramide in der x_1x_2 -Ebene liegt.
 - (2) Zeigen Sie, dass die Punkte A, B, und C näherungsweise die Eckpunkte eines gleichseitigen Dreiecks mit der Kantenlänge 60 [m] sind.

(2 + 4 Punkte)

b) Die Eckpunkte B, C und D liegen in der Ebene E_{BCD} .

Bestimmen Sie rechnerisch eine Gleichung der Ebene $E_{\rm BCD}$ in Koordinatenform.

[Zur Kontrolle:
$$E_{BCD}$$
: $-49 \cdot x_1 + 17 \cdot x_3 = 833$.]

(4 Punkte)

c) Beurteilen Sie die Aussage, dass die Ebene $E_{\rm BCD}$ parallel zur $x_{\rm 2}$ -Achse liegt.

(2 Punkte)

Ministerium für Schule und Bildung des Landes Nordrhein-Westfalen

M LK

M LK Vektorielle Geometrie GTR Seite 3 von 4

Name:	
-------	--

d) Die erste kreisförmige Aussichtsplattform soll durch einen Kreis mit dem Mittelpunkt Q (-8,5|15|9) modelliert werden, der parallel zur x_1x_2 -Ebene liegt.

Bestimmen Sie den Abstand des Punktes Q von der Ebene E_{BCD} .

(3 Punkte)

e) Die Besuchertreppe vom Boden zur ersten Plattform wird im ersten Treppenstück durch einen Abschnitt der Geraden *g* modelliert, der in *P* (16 |–20| –9) beginnt und ins Innere der Pyramide verläuft. Die Gerade *g* ist gegeben durch

$$g: \vec{x} = \begin{pmatrix} 16 \\ -20 \\ -9 \end{pmatrix} + s \cdot \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix}, \quad s \in \mathbb{R}.$$

Die Gerade g durchstößt die Grundfläche ABC der Pyramide im Punkt T.

Berechnen Sie die Koordinaten des Punktes T und bestimmen Sie die Länge des Treppenstückes, welches sich bei dieser Modellierung außerhalb der Pyramide befindet.

[Hinweis: Ein Nachweis, dass der Punkt *T* innerhalb der Dreiecksfläche *ABC* liegt, wird nicht erwartet.]

(5 Punkte)

f) Es wird angenommen, die Besuchertreppe soll durch eine neue Treppe ersetzt werden. Die Planungen sehen vor, dass der Steigungswinkel der neuen Treppe gegenüber der x_1x_2 -Ebene dabei 30° betragen soll.

In einem ersten Vorschlag wird die neue Treppe ausgehend vom Punkt Q (-8,5|15|9) auf der ersten Plattform (vgl. Abbildung 1) als Teil einer Geraden der Schar g_a modelliert:

$$g_a: \vec{x} = \begin{pmatrix} -8.5 \\ 15 \\ 9 \end{pmatrix} + r \cdot \begin{pmatrix} -3 \\ 4 \\ a \end{pmatrix}, \quad r \in IR, a \in IR.$$

Bestimmen Sie die Werte von a, so dass eine durch g_a modellierte Treppe die Planungen erfüllt.

(5 Punkte)

Ministerium für Schule und Bildung des Landes Nordrhein-Westfalen

M LK Vektorielle Geometrie GTR Seite 4 von 4

Name:	
-------	--

Zugelassene Hilfsmittel:

- GTR (Grafikfähiger Taschenrechner)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Seite 1 von 6

Unterlagen für die Lehrkraft

Beispielaufgabe Abiturprüfung 2021

Mathematik, Leistungskurs

Prüfungsteil B: Aufgaben mit Hilfsmitteln

1. Aufgabenart / Inhaltsbereich

Aufgabe mit realitätsnahem Kontext / Vektorielle Geometrie

2. Aufgabenstellung¹

siehe Prüfungsaufgabe

3. Materialgrundlage

entfällt

4. Bezüge zu den Kernlehrplänen und den Vorgaben 2021

Die Aufgaben weisen vielfältige Bezüge zu Kompetenzbereichen und Inhaltsfeldern des Kernlehrplans bzw. zu den in den Vorgaben ausgewiesenen Fokussierungen auf. Im Folgenden wird auf Bezüge von zentraler Bedeutung hingewiesen.

- 1. Inhaltsfelder und inhaltliche Schwerpunkte Analytische Geometrie und Lineare Algebra
 - Lineare Gleichungssysteme
 - Darstellung und Untersuchung geometrischer Objekte
 - Lagebeziehungen und Abstände
 - Skalarprodukt
- 2. Medien/Materialien
 - entfällt

5. Zugelassene Hilfsmittel

- GTR (Grafikfähiger Taschenrechner)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Die Aufgabenstellung deckt inhaltlich alle drei Anforderungsbereiche ab.

6. Modelllösungen

Die jeweilige Modelllösung stellt eine mögliche Lösung bzw. Lösungsskizze dar. Der gewählte Lösungsansatz und -weg der Prüflinge muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet (Bewertungsbogen: Zeile "Sachlich richtige Lösungsalternative zur Modelllösung").

Teilaufgabe a)

(1) Die drei Eckpunkte A, B und C besitzen alle die x_3 -Koordinate Null und liegen somit in der x_1x_2 -Ebene.

(2)
$$\overrightarrow{AB} = \begin{pmatrix} -52 \\ 30 \\ 0 \end{pmatrix}, \quad \overrightarrow{AC} = \begin{pmatrix} -52 \\ -30 \\ 0 \end{pmatrix} \implies |\overrightarrow{AB}| = |\overrightarrow{AC}| = \sqrt{52^2 + 30^2} \approx 60, 0.$$

$$\overrightarrow{CB} = \begin{pmatrix} 0 \\ 60 \\ 0 \end{pmatrix} \implies |\overrightarrow{CB}| = 60.$$

Damit ist das Dreieck ABC näherungsweise gleichseitig mit der Kantenlänge 60 [m].

Teilaufgabe b)

$$E_{BCD}: \vec{x} = \begin{pmatrix} -17 \\ 30 \\ 0 \end{pmatrix} + k \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + l \cdot \begin{pmatrix} 17 \\ -30 \\ 49 \end{pmatrix} \text{ mit } k, l \in \mathbb{R} \text{ ist eine Parametergleichung der Ebene.}$$

Die Orthogonalitätsbedingungen
$$\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0$$
 und $\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot \begin{pmatrix} 17 \\ -30 \\ 49 \end{pmatrix} = 0$ liefern $n_2 = 0$

und
$$17n_1 + 49n_3 = 0$$
 bzw. $n_1 = -\frac{49}{17}n_3$.

Es folgt
$$\vec{n} = \begin{pmatrix} -49 \\ 0 \\ 17 \end{pmatrix}$$
 als ein Normalenvektor von E_{BCD} . Mit $\vec{n} \cdot \vec{x} = \vec{n} \cdot \begin{pmatrix} -17 \\ 30 \\ 0 \end{pmatrix} = 833$ ergibt

sich die Koordinatengleichung: E_{BCD} : $-49 \cdot x_1 + 17 \cdot x_3 = 833$.

Seite 3 von 6

Teilaufgabe c)

Der Normalenvektor
$$\vec{n} = \begin{pmatrix} -49 \\ 0 \\ 17 \end{pmatrix}$$
 der Ebene E_{BCD} steht senkrecht zum Vektor $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$,

der in Richtung der x_2 -Achse zeigt.

Somit ist die Aussage richtig, die Ebene E_{BCD} liegt parallel zur x_2 -Achse.

Teilaufgabe d)

$$E_{BCD}: -49 \cdot x_1 + 17 \cdot x_3 = 833$$
 mit $\begin{vmatrix} -49 \\ 0 \\ 17 \end{vmatrix} = \sqrt{2690}$.

Für den Abstand d der Ebene zum Punkt Q (-8,5|15|9) gilt:

$$d = \left| \frac{-49 \cdot (-8,5) + 17 \cdot 9 - 833}{\sqrt{2690}} \right| \approx 5,08 \text{ [m]}$$

Teilaufgabe e)

Die Ebene E_{ABC} liegt in der x_1x_2 -Ebene.

Daher muss die x_3 -Koordinate des Punktes T auf der Geraden g Null betragen.

$$-9 + s \cdot 2 = 0 \iff s = \frac{9}{2} = 4.5$$
.

Einsetzen von s = 4,5 in die Geradengleichung liefert die Koordinaten des gesuchten Schnittpunktes:

$$\overrightarrow{OT} = \begin{pmatrix} 16 \\ -20 \\ -9 \end{pmatrix} + 4.5 \cdot \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix} \implies T(2,5 \mid -2 \mid 0).$$

Für die Länge des gesuchten Treppenstücks gilt somit:

$$\left|\overrightarrow{PT}\right| = \begin{pmatrix} -13.5\\18\\9 \end{pmatrix} = 4.5 \cdot \sqrt{29} \approx 24.23$$
 [m].

Teilaufgabe f)

Der Steigungswinkel der Treppe entspricht dem Winkel zwischen einer Geraden der Schar g_a und der x_1x_2 -Ebene. Es gilt in Abhängigkeit vom Parameter a:

$$\sin(30^\circ) = \frac{\begin{vmatrix} -3 \\ 4 \\ a \end{vmatrix} \cdot \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix}}{\begin{vmatrix} -3 \\ 4 \\ a \end{vmatrix} \cdot \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix}} = \frac{|a|}{\sqrt{25 + a^2 \cdot 1}}$$

$$[\Leftrightarrow 0.5 \cdot \sqrt{25 + a^2} = |a| \Rightarrow 0.25 \cdot (25 + a^2) = a^2]$$

$$\Rightarrow a = \pm \sqrt{\frac{25}{3}} \approx \pm 2,89 .$$

[Auch ein elementargeometrischer Ansatz ist denkbar, z.B. $\tan(30^\circ) = \frac{|a|}{\sqrt{(-3)^2 + 4^2}}$].

[Da der Winkel einer Geraden zur x_1x_2 -Ebene bestimmt wird und der Parameter a nur in die x_3 -Koordinate eingeht, sind offensichtlich beide Lösungen gültig.]

Seite 5 von 6

. Teilleistungen – Kriterien / Bewertungsbogen zur Prufungsarbeit							
Name des Prüflings:	Kursbezeichnung:						
Schule:							

Teilaufgabe a)

	Anforderungen		Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK ²	ZK	DK	
1	(1) begründet, dass die Grundfläche ABC in der x_1x_2 -Ebene liegt.	2				
2	(2) zeigt, dass die Punkte <i>A</i> , <i>B</i> und <i>C</i> näherungsweise die Eckpunkte eines gleichseitigen Dreiecks mit der Kantenlänge 60 [m] sind.	4				
Sach	lich richtige Lösungsalternative zur Modelllösung: (6)					
Sum	ıme Teilaufgabe a)	6				

Teilaufgabe b)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	bestimmt rechnerisch eine Gleichung der Ebene $E_{\it BCD}$ in Koordinatenform.	4			
Sachlich richtige Lösungsalternative zur Modelllösung: (4)					
Sum	me Teilaufgabe b)	4			

Teilaufgabe c)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	beurteilt die Aussage, dass die Ebene E_{BCD} parallel zur x_2 -Achse liegt.	2			
Sach	lich richtige Lösungsalternative zur Modelllösung: (2)				
Sum	me Teilaufgabe c)	2			

² EK = Erstkorrektur; ZK = Zweitkorrektur; DK = Drittkorrektur

Seite 6 von 6

Teilaufgabe d)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	bestimmt den Abstand des Punktes ${\cal Q}$ von der Ebene ${\cal E}_{{\scriptscriptstyle BCD}}$.	3			
Sachl	ich richtige Lösungsalternative zur Modelllösung: (3)				
Sum	me Teilaufgabe d)	3			

Teilaufgabe e)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	berechnet die Koordinaten des Punktes T.	3			
2	bestimmt die Länge des Treppenstückes, welches sich außerhalb der Pyramide befindet.	2			
Sach	lich richtige Lösungsalternative zur Modelllösung: (5)				
Sum	me Teilaufgabe e)	5			

Teilaufgabe f)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	bestimmt die zugehörigen Werte von a.	5			
Sach	lich richtige Lösungsalternative zur Modelllösung: (5)				
Sum	me Teilaufgabe f)	5			

Summe insgesamt	25				
-----------------	----	--	--	--	--