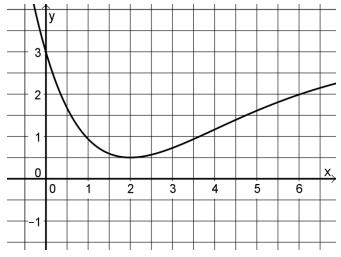
1 Aufgaben aus dem Aufgabenpool 1

1.1 Analysis

A1_1

Die Abbildung zeigt den Graphen der in IR definierten Funktion f.



a) Bestimmen Sie mithilfe der Abbildung einen Näherungswert für $\int_3^5 f(x)dx$. (2 BE)

Die Funktion F ist die in IR definierte Stammfunktion von f mit F(3)=0.

b) Geben Sie mithilfe der Abbildung einen Näherungswert für die Ableitung von F an der Stelle x = 2 an. (1 BE)

c) Zeigen Sie, dass
$$F(b) = \int_3^b f(x) dx$$
 mit $b \in IR$ gilt. (2 BE)

	Erwartete Schülerleistungen	BE
A1_1		
a)	Durch Abschätzen der Anzahl der Quadrate in der Grafik ergibt sich: $\int_3^5 f(x) dx \approx 9 \cdot 0,25 \approx 2,3 \ .$	2
b)	$F'(2) \approx 0.5$	1
c)	Aufgrund $F(3) = 0$ ergibt sich: $\int_3^b f(x)dx = F(b) - F(3) = F(b)$.	2

A1_2

 $\text{Gegeben sind die Funktionen } f_a \text{ mit } f_a(x) = - \, a \cdot x \cdot (x - a) \,, \text{ wobei } x \in IR \text{ und } a \in IR \,, \ a > 0 \text{ gilt.}$

- a) Geben Sie die Nullstellen der Funktionen f_a an. (1 BE)
- b) Bestimmen Sie denjenigen Wert von a, für den $\int_{0}^{a} f_{a}(x) dx = \frac{8}{3}$ gilt. (4 BE)

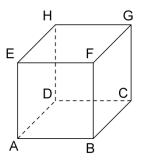
	Erwartete Schülerleistungen	BE
A1_2		
a)	x = 0; x = a	1
b)	$\int_{0}^{a} f_{a}(x) dx = \int_{0}^{a} (-a \cdot x^{2} + a^{2} \cdot x) dx = \left[-\frac{1}{3} \cdot a \cdot x^{3} + \frac{1}{2} \cdot a^{2} \cdot x^{2} \right]_{0}^{a} = \frac{1}{6} \cdot a^{4}$	
	$\frac{1}{6} \cdot a^4 = \frac{8}{3}$; $a^4 = 16$; $a = 2$, da $a > 0$	4

1.2 Analytische Geometrie/Lineare Algebra

1.2.1 Analytische Geometrie

G1_1

Betrachtet wird der abgebildete Würfel ABCDEFGH. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen Koordinatensystem die folgenden Koordinaten: D(0|0|-2), E(2|0|0), F(2|2|0) und H(0|0|0).



- a) Zeichnen Sie in die Abbildung die Koordinatenachsen ein und bezeichnen Sie diese. Geben Sie die Koordinaten des Punktes A an.
- b) Der Punkt P liegt auf der Kante FB des Würfels und hat vom Punkt H den Abstand 3.
 Berechnen Sie die Koordinaten des Punktes P. (3 BE)

	Erwartete Schülerleistungen	BE
G1_1		
a)	$ \begin{array}{c c} X_3 \\ \hline H \\ G \\ X_2 \\ \hline A \\ B \end{array} $	
	Die Skalierung ist durch die eingezeichneten Punkte gegeben und muss nicht gesondert erfolgen. $A(2 0 -2)$	2
b)	Mit P(2 2 x ₃) folgt $ \overrightarrow{HP} = \sqrt{2^2 + 2^2 + x_3^2} = 3$. Aus $x_3^2 = 1$ folgt $x_3 = -1$, da $-2 \le x_3 \le 0$.	
	P(2 2 -1)	3

Die vom Prüfling gewählten Lösungsansätze und -wege müssen nicht mit denen der dargestellten Lösungsskizze identisch sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl unter Berücksichtigung der verbindlichen BE bewertet.

(2 BE)

G1_2

Gegeben sind die Ebene E: $2 \cdot x + y + 2 \cdot z = 6$ sowie die Punkte P(1|0|2) und Q(5|2|6).

- a) Zeigen Sie, dass die Gerade durch die Punkte P und Q senkrecht zur Ebene E verläuft. (2 BE)
- b) Die Punkte P und Q liegen symmetrisch zu einer Ebene F. Ermitteln Sie eine Gleichung von F. (3 BE)

	Erwartete Schülerleistungen	BE
G1_1		
a)	$ \overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = \begin{pmatrix} 5 \\ 2 \\ 6 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 4 \end{pmatrix}$	
	\overrightarrow{PQ} und der Normalenvektor $\begin{pmatrix} 2\\1\\2 \end{pmatrix}$ der Ebene E sind kollinear.	2
b)	Ist M der Mittelpunkt der Strecke \overline{PQ} , so gilt: $\overline{OM} = \frac{1}{2} \cdot \left(\overline{OP} + \overline{OQ} \right) = \frac{1}{2} \cdot \begin{pmatrix} 6 \\ 2 \\ 8 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}.$	
	Da die Ebene F nach der Angabe in a) parallel zu E ist, gibt es einen Wert von d mit F:2x+y+2z=d. Da M in der Ebene F liegt, folgt aus 2·3 +1·1+2·4=d für d der Wert 15.	
	Damit ergibt sich F:2x+y+2z=15.	3

1.2.2 Lineare Algebra

LA1_1

Ein Fixvektor \vec{v} einer Matrix M ist ein Vektor, für den gilt: $M \cdot \vec{v} = \vec{v}$ mit $\vec{v} \neq \vec{0}$.

a) Untersuchen Sie, ob es Werte für a und b gibt, sodass für die Matrix

$$N = \begin{pmatrix} 0.7 & 0.3 & 0.3 \\ a & 0.5 & 0.5 \\ b & 0.2 & 0.2 \end{pmatrix} \text{ und den Vektor } \vec{w} = \begin{pmatrix} 100 \\ 70 \\ 30 \end{pmatrix} \text{ die Bedingungen I und II gelten:}$$

- I Der Vektor w ist ein Fixvektor der Matrix N.
- II Die quadratische Matrix N ist stochastisch, d. h. alle Elemente sind nichtnegative reelle Zahlen und die Spaltensummen sind jeweils gleich eins.
 (3 BE)
- b) Die Vektoren \vec{x} und \vec{y} mit $\vec{x} + \vec{y} \neq \vec{0}$ sind Fixvektoren einer Matrix L. Zeigen Sie, dass auch der Vektor $\vec{z} = \vec{x} + \vec{y}$ ein Fixvektor von L ist. (2 BE)

	Erwartete Schülerleistungen	BE
LA1_1		
a)	Bedingung I:	
	(100) (100)	
	$\mathbf{N} \cdot \vec{\mathbf{w}} = \begin{pmatrix} 100 \\ 100 \cdot \mathbf{a} + 50 \\ 100 \cdot \mathbf{b} + 20 \end{pmatrix} = \begin{pmatrix} 100 \\ 70 \\ 30 \end{pmatrix}$	
	$(100 \cdot b + 20) (30)$	
	Aus $100 \cdot a + 50 = 70$ und $100 \cdot b + 20 = 30$ folgt $a = 0,2$ und $b = 0,1$.	
	Bedingung II:	
	(0,7 0,3 0,3)	
	Die Matrix 0,2 0,5 0,5 ist eine stochastische Matrix, da alle Elemente	
	(0,1 0,2 0,2)	
	nichtnegative reelle Zahlen sind und alle Spaltensummen 1 ergeben.	3
b)	Einsetzen von $\vec{z} = \vec{x} + \vec{y}$ in den Term L \cdot \vec{z} liefert	
	$L \cdot \vec{z} = L \cdot (\vec{x} + \vec{y}) = L \cdot \vec{x} + L \cdot \vec{y} = \vec{x} + \vec{y} = \vec{z}.$	2

LA1_2

Eine Anzahl von Objekten verteilt sich auf zwei Zustände A und B.

In den Verteilungsvektoren $\begin{pmatrix} a \\ b \end{pmatrix}$ gibt a den Anteil der Objekte im Zustand A an und b den Anteil der Objekte im Zustand B.

a) In einem ersten System wird der Übergang von einer Verteilung zu der folgenden durch eine Übergangsmatrix $M = \begin{pmatrix} 0,8 & 0,6\\ 0,2 & 0,4 \end{pmatrix}$ beschrieben.

Bestimmen Sie die Matrix, die zwei Übergänge zusammenfasst.

(2 BE)

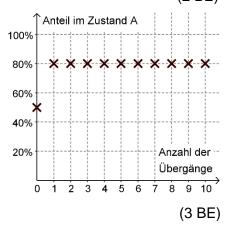
b) In einem zweiten System wird der Übergang von einer Verteilung zu der folgenden durch eine Übergangsmatrix N beschrieben.

Die Anfangsverteilung ist
$$\begin{pmatrix} 0,5\\0,5 \end{pmatrix}$$
.

Die nebenstehende Abbildung stellt die Entwicklung des Anteils im Zustand A für die ersten zehn Übergänge dar.

Begründen Sie, dass
$$N = \begin{pmatrix} 0.8 & 0.8 \\ 0.2 & 0.2 \end{pmatrix}$$
 die

zugehörige Übergangsmatrix sein kann.

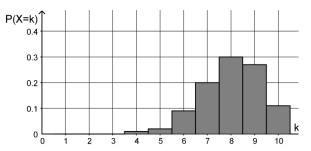


	Erwartete Schülerleistungen	BE
LA1_2		
a)	$\mathbf{M} \cdot \mathbf{M} = \begin{pmatrix} 0.8 & 0.6 \\ 0.2 & 0.4 \end{pmatrix} \cdot \begin{pmatrix} 0.8 & 0.6 \\ 0.2 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.76 & 0.72 \\ 0.24 & 0.28 \end{pmatrix}$	2
b)	N liefert im ersten Übergang $\begin{pmatrix} 0.8 & 0.8 \\ 0.2 & 0.2 \end{pmatrix} \cdot \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix} = \begin{pmatrix} 0.8 \\ 0.2 \end{pmatrix}$.	
	Der Vektor $\begin{pmatrix} 0,8\\0,2 \end{pmatrix}$ ist Fixvektor der Matrix N.	
	Begründung z.B.: $ \begin{pmatrix} 0.8 & 0.8 \\ 0.2 & 0.2 \end{pmatrix} \cdot \begin{pmatrix} 0.8 \\ 0.2 \end{pmatrix} = \begin{pmatrix} 0.8 \\ 0.2 \end{pmatrix}. $	
	Damit liefert N in jedem weiteren Übergang die dargestellten Anteile im Zustand A.	3

1.3 Stochastik

S1_1

Ein Basketballspieler wirft 10 Freiwürfe. Die Anzahl seiner Treffer wird mit k bezeichnet und durch die Zufallsgröße X beschrieben. Die Zufallsgröße X wird als binomialverteilt mit der Trefferwahrscheinlichkeit p=0,8 angenommen. In der Abbildung ist die Wahrscheinlichkeitsverteilung von X dargestellt.



a) Ermitteln Sie mithilfe der Abbildung einen Näherungswert für die Wahrscheinlichkeit dafür, dass der Basketballspieler mindestens 8-mal trifft.

(2 BE)

b) Zeigen Sie, dass die Wahrscheinlichkeit dafür, keinen Treffer zu erzielen, kleiner als

$$\frac{1}{1000000}$$
 ist. (3 BE)

	Erwartete Schülerleistungen	BE
S1_1		
a)	Für $P(X \ge 8) = P(X = 8) + P(X = 9) + P(X = 10)$ ergibt sich z. B. $0,30+0,27+0,11=0,68$.	2
b)	$P(X=0)=0,2^{10}$	
	$P(X=0) = 0.2^{10}$ $0.2^{10} = \left(\frac{2}{10}\right)^{10} = \frac{2^{10}}{10^{10}} = \frac{1024}{10^{10}} = 0.0000001024 \text{ und } \frac{1}{1000000} = 0.000001$	
	Es gilt also: $0.2^{10} < \frac{1}{1000000}$.	3

S1_2

Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl (Z) oder zum zweiten Mal Wappen (W) oben liegt.

Als Ergebnismenge wird festgelegt: { ZZ; WW; ZWZ; ZWW; WZZ; WZW }.

- a) Begründen Sie, dieses Zufallsexperiment kein Laplace-Experiment ist. (2 BE)
- b) Die Zufallsgröße X ordnet jedem Ergebnis die Anzahl der entsprechenden Münzwürfe zu.

	Erwartete Schülerleistungen	BE
S1_2		
a)	$P(ZZ) = \frac{1}{4}$; $P(ZWZ) = \frac{1}{8}$ Die Ergebnisse des Zufallsexperiments weisen also nicht alle die gleiche Wahrscheinlichkeit auf, daher handelt es sich nicht um ein Laplace-Experiment.	2
b)	$P(X = 2) = P(ZZ) + P(WW) = \frac{1}{2}$ Damit gilt $P(X = 3) = 1 - P(X = 2) = \frac{1}{2}$ und es folgt $E(X) = \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 3 = 2,5$.	3

2 Aufgaben aus dem Aufgabenpool 2

2.1 Analysis

A2_1

Für jeden Wert von a $(a \in IR, a > 0)$ ist die Funktion f_a gegeben durch $f_a(x) = a \cdot e^{a+x}$ $(x \in IR)$. Die Tangente an den Graphen von f_a im Punkt $(-1|f_a(-1))$ wird mit t_a bezeichnet.

- a) Weisen Sie nach, dass für jeden Wert von a die Tangente t_a durch die Gleichung $y = a \cdot e^{a-1} \cdot x + 2 \cdot a \cdot e^{a-1} \text{ beschrieben werden kann.} \tag{3 BE}$
- b) Für jeden Wert von a schließen die Tangente t_a und die beiden Koordinatenachsen ein Dreieck ein.
 Ermitteln Sie den Flächeninhalt dieses Dreiecks in Abhängigkeit von a. (2 BE)

	Erwartete Schülerleistungen	BE
A2_1		
a)	Die Gleichung der Tangente t_a lautet $y = t_a(x) = m \cdot x + b$.	
	$m = f_a'(-1) = a \cdot e^{a-1}$	
	Für $x = -1$ gilt: $t_a(-1) = f_a(-1) = a \cdot e^{a-1} \cdot (-1) + b = a \cdot e^{a-1}$.	
	Damit ist $b = 2 \cdot a \cdot e^{a-1}$ und $t_a(x) = a \cdot e^{a-1} \cdot x + 2 \cdot a \cdot e^{a-1}$.	3
b)	Mit $A = \frac{1}{2} \cdot g \cdot h$ und $g = 2$ sowie $h = 2 \cdot a \cdot e^{a-1}$ folgt $A = 2 \cdot a \cdot e^{a-1}$.	2

2.2 Analytische Geometrie

G2_1

Gegeben sind die Punkte A(-2|1|4) und B(-4|0|6).

- a) Bestimmen Sie die Koordinaten des Punktes C so, dass gilt: $\overrightarrow{CA} = 2 \cdot \overrightarrow{AB}$. (2 BE)
- b) Durch die Punkte A und B verläuft die Gerade g.
 Betrachtet werden Geraden, für welche die Bedingungen I und II gelten:
 - I Jede dieser Geraden schneidet die Gerade g orthogonal.
 - II Der Abstand jeder dieser Geraden vom Punkt A beträgt 3.

	Erwartete Schülerleistungen	BE
G2_1		
a)	Mit $\overrightarrow{AB} = \begin{pmatrix} -4 \\ 0 \\ 6 \end{pmatrix} - \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$ und $\overrightarrow{CA} = \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix} - \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2 \cdot \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$ folgt $C(2 3 0)$.	2
b)	Da $ \overrightarrow{AB} = 3$ gilt, hat jede zu g senkrechte Gerade durch B von A den Abstand 3. Aus $\vec{v} \cdot \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} = 0$ erhält man z. B. $\vec{v} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$ als einen möglichen Richtungsvektor. Gleichung einer möglichen Geraden: $\vec{x} = \begin{pmatrix} -4 \\ 0 \\ 6 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$	
	(6) (0)	3

2.3 Stochastik

S2_1

Eine Zufallsgröße X ist binomialverteilt mit der Erfolgswahrscheinlichkeit p und dem Stichprobenumfang n=2.

- a) Berechnen Sie für p = 0,4 die Wahrscheinlichkeit $P(X \le 1)$. (2 BE)
- b) Zeigen Sie, dass für jeden Wert von p gilt: $P(X \neq 0) + P(X \neq 1) + P(X \neq 2) = 2$. (3 BE)

	Erwartete Schülerleistungen	BE
S2_1		
a)	$P(X \le 1) = 1 - P(X = 2) = 1 - 0.4^2 = 1 - 0.16 = 0.84$	2
b)	$P(X \neq 0) + P(X \neq 1) + P(X \neq 2)$	
	= P(X = 1) + P(X = 2) + P(X = 0) + P(X = 2) + P(X = 0) + P(X = 1)	
	$= 2 \cdot (P(X = 0) + P(X = 1) + P(X = 2)) = 2 \cdot 1 = 2$	3