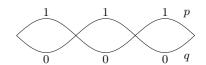
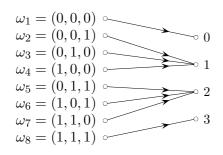
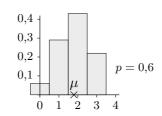
Erwartungswert der Binomialverteilung

Wir betrachten eine Bernoulli-Kette der Länge n=3 und bestimmen den Erwartungswert der Zufallsvariablen $X(\omega)$, die die Anzahl der Treffer (Einsen) angibt, z.B. X(1,0,1)=2.







k	0	1	2	3
P(X = k)	q^3	$3pq^2$	$3p^2q$	p^3

Mit der Verteilung der Zufallsvariablen X kann der Erwartungswert mühelos berechnet werden.

$$E(X) = 0 \cdot q^{3} + 1 \cdot 3pq^{2} + 2 \cdot 3p^{2}q + 3 \cdot p^{3}$$

$$= 3p \underbrace{(q^{2} + 2pq + p^{2})}_{(q+p)^{2}}$$

$$= 3p beachte: p + q = 1$$

Es ist zu vermuten, dass für eine Bernoulli-Kette der Länge n gilt: E(X) = np und dass dieses Ergebnis dadurch zustande kommt, dass der Erwartungswert für eine Bernoulli-Kette der Länge n = 1, nämlich p, nur mit n multipliziert wird.

Zerlegen wir daher die Zufallsvariable X in: $X = X_1 + X_2 + X_3$

oder mit Argumenten:

$$X(\omega) = X_1(\omega) + X_2(\omega) + X_3(\omega),$$

wobei $X_i(\omega)$ die i-te Stelle von ω angibt. Für X_1 (wie auch für X_2, X_3) gilt: Damit ist $E(X_i) = p$

$$\begin{array}{c|cccc}
k & 0 & 1 \\
\hline
P(X_1 = k) & q & p
\end{array}$$

und
$$E(X) = E(X_1) + E(X_2) + E(X_3) = 3p$$
,

das Allgemeine in dieser Überlegung ist nun zu erkennen.

Jedoch ist die Begründung noch nicht ganz vollständig, es fehlt der Nachweis der Linearität:

$$E(X_1 + X_2 + X_3) = E(X_1) + E(X_2) + E(X_3)$$

Seien daher X und Y zwei beliebige Zufallsvariable auf Ω , zu zeigen ist: E(X+Y)=E(X)+E(Y). Aus der obigen Verteilungstabelle von X ist ersichtlich, dass der Erwartungswert auch mit $E(X)=X(\omega_1)\cdot p_1+X(\omega_2)\cdot p_2+\ldots+X(\omega_n)\cdot p_n$ errechnet werden kann (z.B. ist $3p^2q$ die Summe der Wahrscheinlichkeiten dreier Elementarereignisse). Mit der Tabelle kann E(X+Y)=E(X)+E(Y) nun leicht eingesehen werden.

Elementarereignis	ω_1	ω_2	ω_3	 ω_n
Wahrscheinlichkeit von ω_i	p_1	p_2	p_3	 p_n
$X(\omega_i)$	x_1	x_2	x_3	 x_n
$Y(\omega_i)$	y_1	y_2	y_3	 y_n

© Roolfs

Nämlich:

$$E(X+Y) = (x_1+y_1) \cdot p_1 + (x_2+y_2) \cdot p_2 + \dots + (x_n+y_n) \cdot p_n$$

$$= \underbrace{x_1 \cdot p_1 + x_2 \cdot p_2 + \dots + x_n \cdot p_n}_{E(X)} + \underbrace{y_1 \cdot p_1 + y_2 \cdot p_2 + \dots + y_n \cdot p_n}_{E(Y)}$$