Abstand Ursprung/Ebene Hessesche Normalenform

1. Gegeben ist die Ebene E: $\begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix} \cdot \vec{x} - 50 = 0$

E könnte z.B. durch die Punkte $A(10\mid 0\mid 5),\,B(2\mid 1\mid 11)$ und $C(-2\mid -1\mid 14)$ festgelegt sein.

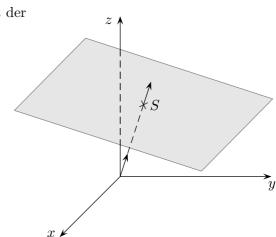
Um den Abstand des Ursprung $O(0 \mid 0 \mid 0)$ zu Ezu berechnen, bringen wir die Ebene zum Schnitt mit der

Geraden $g: \quad \vec{x} = \lambda \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}$

$$\begin{pmatrix} 3\\0\\4 \end{pmatrix} \lambda \begin{pmatrix} 3\\0\\4 \end{pmatrix} - 50 = 0$$

$$25\lambda - 50 = 0$$

$$\lambda = 2$$



Der Schnittpunkt ist daher $S(6 \mid 0 \mid 8)$.

Der Abstand beträgt dann:
$$d = \sqrt{36 + 0 + 64} = \sqrt{100} = 10$$

Da $\vec{n} \circ \vec{n} = 1$ ist, vereinfacht sich die Rechnung, falls wir von der Ebenengleichung $\vec{n} \circ \vec{x} - a = 0$ (Hessesche Normalenform) ausgehen:

$$E: \qquad \begin{pmatrix} \frac{3}{5} \\ 0 \\ \frac{4}{5} \end{pmatrix} \cdot \vec{x} - 10 = 0 \qquad \qquad g: \qquad \vec{x} = \lambda \begin{pmatrix} \frac{3}{5} \\ 0 \\ \frac{4}{5} \end{pmatrix}$$

$$g: \quad \vec{x} = \lambda \begin{pmatrix} \frac{3}{5} \\ 0 \\ \frac{4}{5} \end{pmatrix}$$

$$\begin{pmatrix} \frac{3}{5} \\ 0 \\ \frac{4}{5} \end{pmatrix} \lambda \begin{pmatrix} \frac{3}{5} \\ 0 \\ \frac{4}{5} \end{pmatrix} - 10 = 0$$

$$\lambda = 10$$

$$\vec{n}\,\vec{x}-a=0 \qquad | \quad \cdot \frac{1}{\mid\vec{n}\mid}$$

$$\begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix} \cdot \vec{x} - 50 = 0 \qquad | \quad \cdot \frac{1}{5}$$

Das bedeutet:

Das 10-fache des Einheitsvektors führt zum Schnittpunkt S, daher muss der Abstand 10 sein. In der Hesseschen Normalenform $\vec{n} \circ \vec{x} - a = 0$ ist also a der Abstand zum Ursprung.

1

2. Bestimme den Abstand der Ebene zum Ursprung:

a)
$$\begin{pmatrix} -4\\3\\0 \end{pmatrix} \cdot \vec{x} - 15 = 0$$

$$b) \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \cdot \vec{x} - 12 = 0$$

a)
$$\begin{pmatrix} -4 \\ 3 \\ 0 \end{pmatrix} \cdot \vec{x} - 15 = 0$$
 b) $\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \cdot \vec{x} - 12 = 0$ c) $\begin{pmatrix} 7 \\ -4 \\ -4 \end{pmatrix} \cdot \vec{x} - 18 = 0$

Abstand Ursprung/Ebene Hessesche Normalenform

Bestimme den Abstand der Ebene zum Ursprung:

a)
$$\begin{pmatrix} -4 \\ 3 \\ 0 \end{pmatrix} \cdot \vec{x} - 15 = 0$$
 b) $\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \cdot \vec{x} - 12 = 0$ c) $\begin{pmatrix} 7 \\ -4 \\ -4 \end{pmatrix} \cdot \vec{x} - 18 = 0$

$$b) \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \cdot \vec{x} - 12 = 0$$

c)
$$\begin{pmatrix} 7 \\ -4 \\ -4 \end{pmatrix} \cdot \vec{x} - 18 = 0$$

Ergebnisse: a) 3, b) 4, c) 2

Hessesche Normalenform Ergänzung

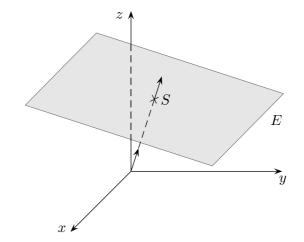
allgemein:

$$E: \ \vec{n}^{\circ} \vec{x} - a = 0$$

$$g: \quad \vec{x} = \lambda \, \vec{n}^{\circ}$$

Schnitt:

$$\vec{n}^{\circ} \cdot \lambda \, \vec{n}^{\circ} - a = 0$$
 beachte: $\vec{n}^{\circ} \cdot \vec{n}^{\circ} = 1$
 $\lambda - a = 0$
 $\lambda = a$



Das λ -fache des Einheitsvektors \vec{n}° führt zum Schnittpunkt S, daher muss der Abstand der Ebene zum Ursprung λ bzw. a sein.

$$E\colon \vec{n}\vec{x} - a = 0, \quad a > 0$$

$$g: \qquad \quad \vec{x} = \lambda \, \vec{n}$$

Schnitt:

 λ ist positiv, d. h. der Ortsvektor \vec{n} weist in Richtung der Ebene E.